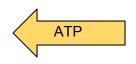
Low Level Phosphorus: A Method Comparison Study Katie Adams* Stephanie Le, Theresa McBride, Tom

Pearson EPA Region 10 Laboratory August 2012

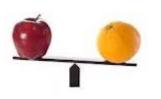
Goal: 1 µg/L Total P Quantitation

Why?

8/29/2012



Compliance Monitoring must be done using a CWA approved method; otherwise an ATP is required


Various analytical methods to try:

- Standard Methods 4500-P E(3) (Colorimetric) Approved
 - manual UV/Vis,10 cm cell
- EPA Method 365.1 (Colorimetric, Flow-Injection)
 - "standard" manifold
 - "low level" manifold
 - in-line UV digestion manifold
- Method 200.8 (ICPMS)
 - Perkin Elmer, with and without reaction cell
 - Agilent, with and without collision cell

Approved

What do we call Quantitation?

<u>MDL</u>

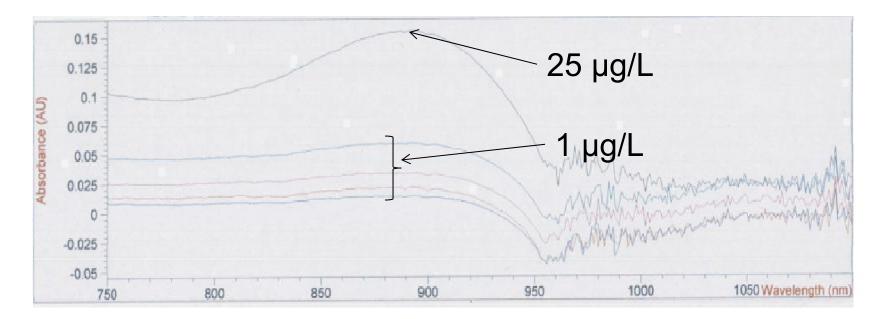
- 7 low level standards
- 3.14 X Std. Dev. VS
- 95% confidence of non-zero result

Reporting Limit

- 7 standards at the Reporting Limit concentration
- 70-130% recovery

Roadblock: Contamination

- Soak everything in HCI solution: (autosampler tubes, cuvettes, digestion tubes, volumetric flasks)
- Dedicated glassware
- Long rinse times
- Embedded in some plastics?


Standard Methods 4500-P E(3) (Manual UV/Vis)

- Colorimetric, based on Ascorbic Acid/Molybdate Chemistry
- Advantage: Can employ 10 cm cell
- Method for *orthophosphorus*, so samples must be digested (sulfuric acid/persulfate), then pH adjusted before analysis

Manual UV/Vis

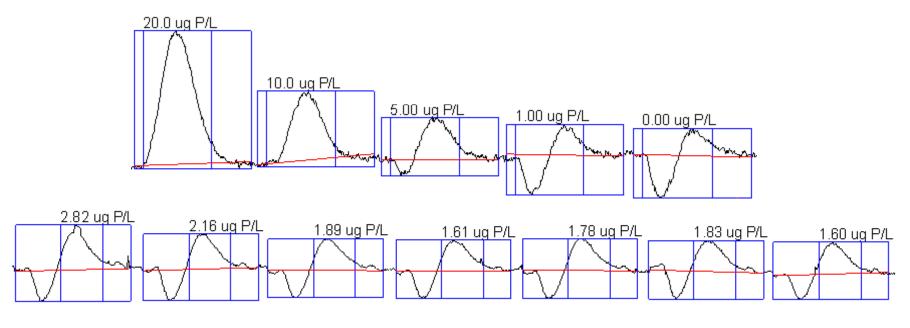
Digested (then pH adjusted) standards:

8/29/2012

Manual UV/Vis, Continued

7 Replicates 1 µg/L Standard (µg/L)

0.551	
0.556	MDL = 4.3 µg/L
-2.144	Not 70-130% recovery
1.968	
1.119	
.3655	
1.797	



Flow Injection Analysis (FIA)

FIA – Standard Manifold

MDL = 1.1 µg/L Not 70-130% recovery

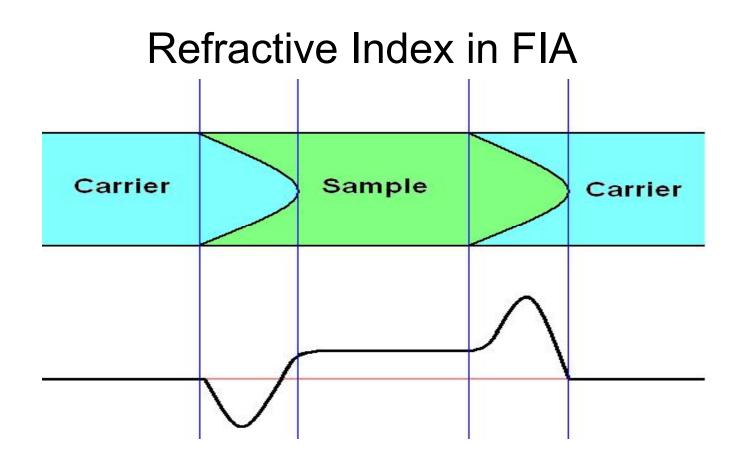
FIA: Low-Level vs. Standard Manifold Sample Loop: 350 cm x 1.02 mm vs. 100 cm x 0.8mm

Heater:

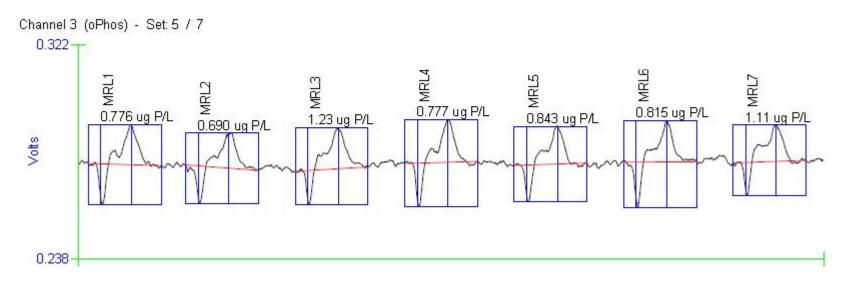
60° C w/ 1200 cm coil vs. 37° C w/ 175 cm coil Post Heating:


Two 255 cm alternating coils vs. None

Pathlength:


2 cm flowthrough cell vs. 1 cm

Low-Level FIA - Spectrum



Low Level Manifold- 1 µg/L standards



MDL = $0.63 \mu g/L$ Almost 70-130% recovery

FIA – In Line Digestion

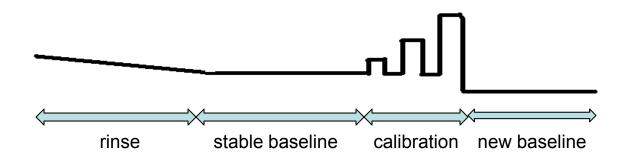
- UV irradiation used to convert all P to Ortho
- Separate manifold from Low Level P, but similar features
- Potentially Cleaner!
- Easier!
- As effective? Work in Progress...

ICP-MS: Why is P a Challenge?

- Ion is ³¹P, interferences are ¹⁵N¹⁶O, ¹⁴N¹⁶O¹H
- Nitrogen is impossible to eliminate
 - From atmosphere
 - In samples
 - HNO₃ frequently used

8/29/2012

ICP/MS – Collision Cell vs. Reaction Cell


- Reaction Cell (Perkin Elmer)
 - Reactive gases; reacts with interferants, changing m/z^+
 - OR reacts with analyte, changing m/z⁺ of measurement
 - With O₂ gas, ³¹P \rightarrow ³¹P¹⁶O, m/z⁺ 47
- Collision Cell (Agilent)
 - Gas (He or H₂) collides with all ions, but collides with larger polyatomic ions more frequently
- Both may be run in "No Gas" mode

Roadblock: Baseline

Carryover
Shifting baseline
Exacerbated by presence of HNO₃

8/29/2012

Perkin Elmer, "No Gas" Results

- Not useable, as expected (nitrogen interference)
- Background counts: 265000 cps
- 1 µg/L P is about 100 cps

Perkin Elmer, O₂ Reaction Gas Mode

(Background reduced to ~1000 cps)

<u>Undigested 1 µg/L</u>	<u>Digested 1 µg/L</u>
0.936	1.57
0.996	1.39
0.825	1.25
0.947	1.42
1.06	1.20
0.922	1.06
0.992	1.09

MDL = 0.23	MDL = 0.59	
70-130% recovery	Not 70-130% recovery	

Agilent, 1 µg/L Standards

Collision Ga	"No Gas" Mode		
He	<u>H</u> 2		
4.75	2.15	1.10	
3.75	4.78	0.938	
2.59	4.72	0.992	
5.55	3.50	1.25	
2.80	2.49	1.03	
4.67	3.01	1.00	
3.15	0.906	1.01	
MDL = 3.5	MDL = 4.4	MDL = 0.32	
Not 70-130%	Not 70-130%	70-130%	
recovery	recovery	recovery	

Phase 2: Real Samples

Most Promising Methods

FIA, Low Level P manifold ICPMS, PE, O₂ Reaction Gas ICPMS, Agilent, No Gas Mode FIA, in-line digestion? Matrices

Surface Waters

•WWTP Effluents

Surface Water : Coeur D'Alene Lake

All results in µg/L					
Sample	Agilent, No Gas Average Result	Low Level FIA Average Result	Perkin Elmer, O ₂ Average Result		
Lake sample 1	3.7 (32% RPD)	12.0 (RPD: N/A)	139 (1.4% RPD)		
Fortified sample 1, N=6	102% (2.8% SD)	117% (3.4% SD)			
Lake sample 2	3.5 (5.7% RPD)	9.7 (RPD: N/A)	140 (2.2% RPD)		
Fortified sample 2, N=6	107% (2.8% SD)	140% (11% SD)			
Lake sample 3	5.8 (1.7% RPD)	8.6 (8.2% RPD)	130 (2.6% SD)		
Fortified sample 3, N=6	104% (2.8% SD)	122% (3.4%SD)	100% (1.7% SD)		
Fortifications: Agilent 10 μg/L, FIA 5 μg/L, PE 25μg/L on 5x diluted sample					

Possible Interferences?

- Ca 5 mg/L
- Fe 0.1 mg/L
- Mg 1.5 mg/L
- Na 2 mg/L
- Si 5 mg/L ³⁰Si¹⁶O¹H ²⁸Si¹⁸O¹H

May also bias colorimetric results

Conclusions

- Control blanks and baseline
- Minimize sample manipulation
- Method 200.8, using Agilent, "no gas" mode, shows promise
- Method 365.1, FIA using "low level P" manifold, has low detection limits but may be biased
- Method 200.8, using Perkin Elmer, O₂ reaction gas, exhibits a strong interference from Si, which may limit its usefulness

Yet to come...

- More investigation of In-line digestion FIA
- Continued evaluation of Surface Water; investigation of sources of bias
- Waste Water Treatment Plant Effluent

Acknowledgements

• Theresa McBride, Stephanie Le, Tom Pearson

8/29/2012

Any Questions?

