Combining XRF Field Measurement with Incremental Sampling

Author and Project Manager: Michael Stroh, MO DNR Presenter:

Deana Crumbling, USEPA

X-Ray Fluorescence (XRF)

- "Point & shoot" metals analysis
- Measure by
 - Gun window directly on ground (drawback is high sampling error)
 - Prepared soil in special cup (typically soil is ground)
 - Prepared soil in plastic bag: average multiple shots per bag (reduces sampling error without grinding; check for bias from the plastic)

Former Sites of Galena Mine and Lead Smelter

Records on mining & production

GRASSROOT DIGGINGS.

T. 41, R. 14 W., Secs. 23 and 26, Miller county. Owned by James J. Blackburn. The principal diggings are situated on all sides of a pretty steep and high hill. The shafts are, however, the most numerous on the north-eastern Slope. Nearly all of them struck loose Galena in red Clay, at depths from 10 to 20 feet. On the upper part of the north-eastern Slope, a shaft was sunk to a depth of 80 feet, and passed through 25 feet of Clay, so rich in Galena, that 100,000 pounds were raised. The shaft then struck solid Limestone with occasional seams

570

GEOLOGICAL SURVEY.

and specks of Galena, and penetrated 55 feet into it, until it struck a Chert-layer. As the Galena was very scarce, and the work not paying, the exploration was stopped for the present. Slabs of Sandstone occurs on the surface of the south-western Slope of the hill. These diggings have been worked since 2 years ago, and have produced about 500,000 pounds of Galena. The latter is smelted in the *Grassroot-air Furnace*, erected in the vicinity of the diggings, and owned by Blackburn and Johnson. The pig-lead is shipped per boat down the Osage River, and from Osage City by rail to St. Louis.

Site Photos

Campground

Campsite size = 1500 sq ft each

NEMC 2012

Study Questions

- Does the mean Pb concentration in the fine particulate fraction (<250 µm = 60 mesh) of surface soil (0-2 inches) in any campsite exceed the riskbased screening level?
- Does the mean Pb concentration in the subsurface (2-4 inches, fine fraction) in the 2 campsites where the smelter was located (#1 and #2) exceed the riskbased screening level?

Reality Check

The Incremental Sampling IDEAL: 30 increments per incremental sample (IS) 3 replicate ISs per DU Total of 10 DUs (6 surface DUs + 2 bkgd DUs +

2 subsurface DUs)

= 900 increments of surface soil + 180 hand-dug pits

Would bust grant budget; really needed given that the campsites are only 1500 sq ft each?

8 Aug 2012

Incremental Sampling Design

8 Aug 2012

9

Collecting IS Samples

IS Sample Processing

NEMC 2012

Real-time Data Processing

	Cam	psite 1	30-incr						
Replicate 1			A QC Check for XRF						
	0-2"			VDE Instrument	t Drooi	cion Cl	nor /	Deediere	
		Instrmnt	Instrmnt	ARF Instrumen	I Preci	SION CI	IECK	Reading	Inst Error
Badded Replicate		mourning	mournine	Bag reading 1				455	10
Doodinge		Result	Error	2	Car	mpsite 4	Bag	477	11
Reauings			(CD)	3				450	10
		(ppm Pb)	(as SD)	4				459	10
Bag reading 1		1251	18	5				450	10
2		1308	18	6				455	10
3		1303	19	7				459	10
4		1434	19				Mean	460.3	
	Mean	1324.0					SD	11.8	
	SD	77.7							
	%RSD	5.9		Note: Instru	ment i	s not n	noved		
2-sided CLs	n =	4		between the	ese rep	olicate	shots		
Bag 95	%LCL =	1200							12
Bag 95	%UCI =	1448							

Summary of Data

Campsite #	DU depth	# incr	# IS repls	Result/mean	SD of repls
1	0-2 in	30	3	1316	75
1	2-4 in	15	1	1724	N/A
2	0-2 in	30	3	2331	284
2	2-4 in	15	1	3571	N/A
3	0-2 in	15	1	106	N/A
4	0-2 in	15	1	444	N/A
5	0-2 in	15	1	310	N/A
6	0-2 in	15	1	190	N/A
Future C-site	0-2 in	15	1	134	N/A
Bkgd #1	0-2 in	30	1	42	N/A
Bkgd #2	0-2 in	30	1	32	N/A

Partitioning Sources of Error

Reducing uncertainty requires more increments per incremental sample

95% UCLs for Campsites 1 & 2 Surface DUs

- Calculated from results of 3 (30-incr each) replicate ISs
- Each replicate result represents a physical mean
- Example for DU1:

DU 1 Repl.	Pb, mg/kg	
1	1,324	
2	1,386	
3	1,237	
Grand Mean	1,316	
SD (SE _{mean})	75	
%RSD	6	

$$tUCL_{1-\alpha} = \overline{X} + t_{1-\alpha,n-1}\left(\frac{s}{\sqrt{n}}\right)$$

$$- tUCL_{95} = 1,316 + 2.92 \left(\frac{75}{\sqrt{3}}\right) = 1,442 \, ppm$$

95% UCLs for Campsites 1 & 2 <u>Sub</u>surface DUs Steps 1 & 2

- No replicates collected (no DU-specific SD); 15 incr per IS
- Derive subsurface SD using relationship between Std Error of the mean (= the SD of the IS replicates) & SD of the increments

$$\frac{\text{Step 1}}{SE_{mean(90incr)}} = SD_{repls} = SD_{90incr} \div \sqrt{n}$$

$$SD_{90incr} = SD_{repls}\sqrt{n}$$

$$SD_{90incr} = 75\sqrt{90} = 710$$

$$\uparrow$$

$$SD \text{ of the 3 IS replicates (of 30 incr each) for DU 1 (surface soil)}$$

$$\frac{\text{Step 2}}{\text{Now calculate SE when have 15 incr.}}$$

$$SE_{mean(15incr)} = \frac{SD_{90incr}}{\sqrt{n}} = \frac{183}{\sqrt{15}}$$

95% UCLs for Campsites 1 & 2 <u>Sub</u>surface DUs Step 3

- We now have an estimate for the SD between 3 simulated replicates of 5 increments each
- Using equation for t-UCL as before:

$$tUCL_{1-\alpha} = \overline{X} + t_{1-\alpha,n-1} \left(\frac{s}{\sqrt{n}}\right)$$

For DU 1 subsurface:

$$tUCL_{95} = 1,720 + 2.92 \left(\frac{183}{\sqrt{3}}\right) = 2,033 \, ppm$$

Pb conc from the single 15-incr. subsurface IS; treated as a simulated average of 3 replicate 5-incr ISs

Deriving UCLs For Campsites 3-6 & F

- By in-situ XRF: low concentrations & low variability
- Surface (0-2 inches) only
- 15 increments per IS; 1 IS per DU so no within-DU SD
- Group Campsites 3-6 & F together
- Use ProUCL to plot the low conc group's data (n = 5); calculate group's SD & UCL

Statistical Distribution for Low-conc DUs

ProUCL Q-Q Plots

Low-conc DU Group UCL Calculation

ProU outp

UCL

		General S	Statistics		
	Number of Valid Observations	5	Number of Distinct Observal	ions	5
	Raw Statistics		Log-transformed Statistics		
ralici	Minimum	105	Minimum of Log [Data	4.654
IUUUL	Maximum	444	Maximum of Log [Data	6.096
	Mean	236.6	Mean of log [Data	5.326
outout	Median	190	SD of log [Data	0.592
	SD	140			
	Std. Error of Mean	62.62			
	Coefficient of Variation	0.592			
	Skewness	0.889			
			ics		
			Lognormal Distribution Test		
			Shapiro Wilk Test Statistic	0.961	
			Shapiro Wilk Critical Value	0.762	
UCL for the	e low conc		Data appear Lognormal at 5% Significance Level		
aroup (DLL					
group (DO	5 3-0 & г) 🦛		Assuming Lognormal Distribution		
- 505	ma/ka		95% H-UCL 6	43.1	
- 505	iiig/ng		95% Chebyshev (MVUE) UCL 5	.04.6	
			97.5% Chebyshev (MVUE) UCL 6	20.9	20
	NEM	IC 2012	99% Chebyshev (MVUE) UCL 8	49.3	20

Putting An Upper Bound on Uncertainty For the Means of Individual DUs

- Mean of ISs from DUs 3-6, F = 237mg/kg
- Mean-to-UCL width for between-DU variability 505-237 = <u>268</u>

Use as a conservative estimate of *within*-DU uncertainty

DU	Pb IS Result, ppm	Measure of Uncertainty	Pb Mean + Uncertainty, ppm		
3	105	268	373		
4	444	268	712		
5	310	268	578		
6	190	268	458		
F	134	268	402		

These will be compared to the screening level

Summary

- Field analytical method (XRF) used to firm CSM & guide IS design
- <30 increments reasonable since DU areas are very small
- Estimates of variability extrapolated across DUs that belong to the same concentration population
- Penalty paid in higher UCLs, but acceptable given distance from SL

