

HUMAN HEALTH | ENVIRONMENTAL HEALTH

Optimizing RSK 175 for the analysis of Methane, Ethylene, Acetylene and Ethane in Water by Headspace-Gas Chromatography (HS-GC) with Flame Ionization Detection (FID)

> Lee Marotta, Product Specialist, PerkinElmer Dennis Yates, Staff Scientist

© 2012 Perkin Elmer

> Introduction

THREATER ENVIRONMENTAL DATER

Headspace Theory and Operation

> Method parameters and results

- The rapid development of natural gas from unconventional sources in North America has created an energy "gold rush". The advent of horizontal drilling technologies and hydraulic fracturing has made this production economical and presents an energy source of sufficient magnitude that could last 100 years.
- The technology presents a number of analytical challenges. The wells are drilled vertically through aquifers on their way to the deep shale deposits thousands of feet under the surface. In the process of drilling the wells and preparing them for production (including "fracking" to optimize production), opportunities arise for contamination of the clean drinking water aquifers with methane and other low molecular weight organics (e.g., propane and ethane).

HUMAN HEALTH | ENVIRONMENTAL HEALTH

Theory and Operation

© 2012 Perkin Elmer

TIDIAWATI FALLE ENARONMENDATI PATI F

Consider:

Time Temperature

Enabling quantitative Static Headspace

- Equilibration time must be long enough for each analyte to be in equilibrium
- Matrix effect the partition coefficient is matrix dependent therefore the partition for each analyte in the standard and the sample must be the same
- Low (dilute) vapor phase Activity Coefficient must remain constant
- Sample must represent a partitioned system

TITINAN TEATTE ENVALISMENTAL TEATTE

- Equilibration time must be long enough for each analyte to be in equilibrium
- Matrix effect the partition coefficient is matrix dependent therefore the partition for the analyte in the standard and the sample must be the same
- Low (dilute) vapor phase Activity Coefficient must remain constant
- Sample must represent a partitioned system

Partition Coefficient

THREAT FOR THE CONTROLMENTAL TO VEH

 $K = C'/C^g$

- K = Partition coefficient of a volatile
- C^{I} = Concentration in the liquid phase
- C^{g} = Concentration in the gas phase

TITREVETEXTEE ENABORINTYCTEATEE

When K is small

When K is large

TITIMANTICALITE CNABONNENDAT TEAT.IF

- A = Peak Area or Response
- C^o = Concentration of analyte in sample
- K = Partition Coefficient
- β = Phase Ratio = Vg/Vs
- Vg = Volume of the gas phase
- Vs = Sample Volume

THREAT FOR MARCHINE AND A TRACT

HUMAN HEALTH | ENVIRONMENTAL HEALTH

© 2012 Perkin Elmer

HS Conditions:		
Sample Temp:	90°C	
Equilibration time:	10 min	
Needle Temp:	110°C	
Transfer Line Temp:	120°C	
Inject Time:	0.06 min	
Withdrawal Time:	0.4 min	
Pressurization Time:	1.0 min	
HS Mode:	Constant	
HS pressure:	20 psi	
GC Conditions:		
Oven Temp:		
Initial Temp:	40°C	
Initial Hold:	4.5 min	
Ramp	40°/min	
Final Temp:	205°C	
Final Hold:	1 min	
Detector (FID):		
Detector Temp:	240°C	
Air Flow	w 400 mL/min	
Hydrogen Flow	40 mL/min	
Range	1	
Attenuation -6 (or 1)		

HRIMAR TEACHE E ENARONMENTACTEACHE

10 ppb Chromatogram

Blank

Sample	Area		
Name	(Methane)		
15mL Water Blank	2093.5		
15mL Water Blank	2163.7		
15mL Water Blank	2337.4		
15mL Water Blank	2124.3		
Average	2179.7		
%RSD	5%		

- Contribution is significantly below the reporting limit of 1ppb
- Incorporating this point on the curve as a "zero" amount subtracts this value from the calibration

TORIVETEVELE ENABORATERIAL TEVEL

Level #	Methane	Ethylene	thylene Acetylene	
Level 1	0.80	1.40	1.30	1.50
Level 2	2.00	3.50	3.25	3.75
Level 3	4.00	7.00	6.50	7.50
Level 4	8.00	14.00	13.00	15.00
Level 5	20.00	35.00	32.50	37.50

Results of Calibration

THREATER FINAL CONTROL AND A DEALTH

Amount (PPB)

Methane			Ethylene		
Actual	Calc	% Dev	Actual	Calc	% Dev
Amount	Amount		Amount	Amount	
2.00	2.05	2.50	3.50	3.43	-2.00
10.00	10.72	7.20	17.50	18.68	6.74
14.00	15.19	8.50	24.50	26.40	7.76
20.00	20.69	3.45	35.00	36.44	4.11
Acetylene			Ethane		
Actual	Calc	% Dev	Actual	Calc	% Dev
Amount	Amount		Amount	Amount	
3.25	3.24	-0.31	3.75	3.59	-4.27
16.25	18.27	12.43	18.75	19.91	6.19
22.75	24.31	6.86	26.25	28.43	8.30
32.50	35.55	9.38	37.50	39.14	4.37

TRONMENTAL TEALTE

TITREVETE VETE ENABORINENTAL TEVETE

Sample	Methane	Ethylene	Acetylene	Ethane
Name	Area	Area	Area	Area
40 uL	43180	70067	25773	80441
40 uL	44330	70199	25430	81390
40 uL	43421	67911	23123	79164
40 uL	44331	71017	24700	82016
40 uL	42184	66722	23495	76234
Average	43489	69183	24504	79849
% RSD	2.1	2.6	4.8	2.9

Fortunately, headspace/GC with Flame Ionization detection provides a very simple, fast, accurate and precise solution to this important analysis. PerkinElmer TurboMatrix Headspace / Clarus GC - FID

Contact Information lee.marotta@perkinelmer.com