Setting Up a qPCR Lab

Points to Consider for Accreditation

Julie Kinzelman, PhD NEMC (Micro Session) 7 August 2012 (1530 – 1600)

Remember QPCR is *not* Measuring the Same Thing as a Culture...

- QPCR differs from traditional culture-based assays in that it measures all DNA:
 - live cells
 - dead cells
 - non-culturable cells
 - free DNA
- Culture assays only measure cells possessing the ability to grow on the selective media you are using

Feasibility Studies

- Ability of the method to accurately characterize water quality
 - Will you use the same indicator as your culture-based assay?
 - Is live vs. dead cells important?
 - Will the assay work with your samples?
 - Inhibition, underestimation
 - Unexplained false negatives w/o inhibition
- Turn-Around-Time
 - Will you be able to collect and process the sample in order to make it "real time"?
 - Distance of site to analytical lab
 - Do you have diurnal variation?

Choice of Molecular Target

- Site Specific Suitability
 - E. coli or enterococci for fresh water
 - Enterococci for marine water
 - Bacteroides?
- Wet chemistry or beads
 - Assay time
 - Precision/accuracy
- Sample DNA extract pre-treatment?
 - Crude
 - Serial Dilution
 - DNA extraction or purification kits

Inhibition or Underestimation

- Chemical or inorganic constituents in the sample which prevent reaction from occurring
 - Humic substances
 - Non-point source pollutants
- Competition for target with bacteria-rich samples
- Other environmental conditions which result in no detection in the absence of inhibition
 - i.e. some algal blooms

Beach Sanitary Surveys

- Guided data gathering at time of sample collection
- Environmental conditions
 - Wave height, turbidity, recent precipitation, presence of algal biomass
- Can be used to predict site specific inhibition
- Can be used in developing predictive models
- Can help you make sense of your data!

Environmental Data Collected – Routine/Daily BSS

General Beach Conditions

- Air temperature
- Wind speed/direction
- Rainfall
- Weather condition (sunny, etc.)
- Current speed/direction
- Wave Height

Water Quality

- FIB concentrations
- Water temperature
- Water color/odor
- Turbidity (clarity)

Bather Load

- Total number of people at beach
- Swimmers/non-swimmers

Potential Pollution Sources

- Sources of discharge
 - Rivers, outfalls, wetlands, etc.
- Floatables
- Amount of debris/litter
- Amount of algae
 - Stranded on beach
 - Floating/submerged in water
- Presence of wildlife
 - Gull counts
 - Geese, deer, other
- Presence of domestic animals
 - Dogs, Horses

Physical Space Requirements

- Segregated work spaces
 - Sample filtration/DNA extraction
 - Preparation of master mix
 - Sample analysis
- Washable surfaces
 - Non-porous
 - UV disinfection, bleach
- Unidirectional workflow
- Dedicated equipment
- Dedicated PPE
- Proper disposal of DNA waste

Product Sourcing/Costs

- Consistent product quality
- Sole suppliers vs. open market
- Single lot numbers
- Wet chemistry vs. beads/kits
- Manufactured vs. lab-prepared
- Cost differential
 - Culture vs. qPCR

Total analytical costs for qPCR (2 beaches, including QC):

qPCR (*E. coli*) = \$65.00 IDEXX (*E. coli*) = \$20.00

Staff Training Needs

- Aseptic technique!
- Pipetting skills
- Good laboratory practices
- Understanding of molecular concepts
 - Need comprehensive understanding of assay results
- Precision/accuracy
- Reproducibility
- Academic and hands on
 - Learn the basics
 - Observe a trained professional
 - Vendor training
 - National and regional training opportunities
 - Train the trainer (referee labs)
- Data review prior to doing it alone

QA/QC

- What QC samples should be run?
 - Method Blank (contamination during sample filtration)
 - Filter Blank (contamination in extraction process)
 - NTC (reagent contamination)
 - Calibrator (target quantification check)
 - SPC control (extraction and inhibition control)
- Number/Frequency?
- Definition of inhibition
 - ->3 cycle threshold difference b/w cal-SPC and unknown-SPC (EPA definition)

QA/QC

- Field replicates vs. sample replicates
 - Sample replicates = 2 sub-samples from 1 DNA extraction
- Detection in the negative controls
 - >35 CT in more than a single NTC
 - <45 CT in a third of NTC rxns for a single MM</p>
- Non-agreement/non-consensus
 - Replicate analyses should agree within 1 CT
 - When is it ok to average replicate CT values?
 - How do you know what the right answer is?
- Reporting out "non-detects"
 - Less than half the reciprocal of the dilution factor
 - What does that mean?

Sample Handling & Storage

- Storing supplies
 - Calibrators, Lab prepared cells @ -80 °C
 - Controls, SPC @ 4 − 8 °C
 - DNA Reagents, product dependent
 - How long?
 - Stock salmon DNA was good for 5 years @ 4 °C
 - Lab prepared cell suspensions were good for 5 years @ -80 °C
- Storing samples
 - Fresh, analyzed w/i 4 hours of collection
 - Filters, freeze @ -80 °C
 - DNA extracts, good for 7 days @ 4 °C (up to 1% loss/day)
- Mailing samples and/or reagents
 - Degradation can occur if temp is not maintained

Reagents and Controls

- Reagents
 - Wet Chemistry or bead technology
 - Troubleshooting contamination
- Calibrators and Controls
 - Lab-prepared vs. commercial products
 - Precision (cal curves, replicate sample agreement)
 - Accuracy (calibrators, SPC)
 - Reproducibility (b/w run calibrator agreement)
 - Inter-laboratory validation studies

Comparative Testing (Method Validation)

Within lab

- Can you continue to use the same procedures/protocols that you used for culture-based assays?
 - Time of sample collection
 - Composite sampling
- Numerical agreement
 - Should/could you expect to see this?
- Regulatory action agreement
 - Will you be as protective to public health and safety?

Between labs

- Inter-laboratory reproducibility studies
- Referee labs

Composite Sampling

- Physical combining of multiple sub-samples into a single sample
 - Is it valid to composite?
 - Does the composite value fall within the range if individual values?
 - Would a composite sample mask a true elevation?
- Increases spatial coverage
- Maintains analytical costs
 - May be particularly useful when considering qPCR

Inter-laboratory Reproducibility Study

- Chosen based on
 - Level of experience with qPCR
 - Type of instrument platform
 - Certification as a water testing laboratory
- Most proficient lab acted as the referee lab
- Sole source of reagents, calibrators, and controls
- Same day shipping
- Analyze replicate filters within a set timeframe

Study Design

- Target = *E. faecalis*
- 24 sets of replicate filters from archived surface water samples
 - 75% unspiked, 25% spiked
- Phase I = analysis of 6 standard curves
- Phase II = analysis of 12 replicate spiked and unspiked filters
- Phase III = analysis of 12 archived replicate filters from inland waters and Great Lakes

Results

- Standard curves
 - 10, 100, 1000, and 10,000 cells
 - Very good agreement between laboratories
 - Composite standard curve: $R^2 = 0.99$, PCR efficiency = 101.5%
- Spiked and unspiked filters
 - No significant difference in DNA recovery as determined by calculated CCE/100 mL (p = 0.50 0.99)
- Archived filters
 - No significant difference b/w participant labs
 - Significant difference b/w referee lab and participant labs
 - Degraded SPC probes/primers (primarily)
 - DNA loss
 - Inherent sample variability

Pilot Implementation - Racine (2011)

- E. coli
 - Method 1603 vs. Colilert-18
 - Colilert-18 vs. qPCR
 - Colilert-18 vs. Virtual Beach model
 - qPCR vs. Virtual Beach model
- Enterococci
 - Method 1600 vs. Enterolert
 - Enterolert vs. qPCR
- Relate back to NEEAR study findings

E. coli (Method 1603) and enterococci (Method 1600) were correlated when using culture-based enumeration methods

Correlation: culture to culture

There is not perfect agreement, even between two culture-based methods

C-18 vs. 1603, North Beach - AM (2011)

Anova: Single Factor

SUMMARY

Groups	Count	Sum	Average	Variance
Colilert-18	4	46 4388	95.39130435	102011.8879
Method 1603	4	46 2350	51.08695652	7865.458937

ANOVA

SS	df	MS	F	P-value	F crit
45146.13043	1	45146.13043	0.821755015	0.367088177	3.946875558
4944480.609	90	54938.67343			
4989626.739	91				
	45146.13043 4944480.609	45146.13043 1 4944480.609 90	45146.13043	45146.13043	45146.13043

vs.
Colilert-18

E. coli CCE/100 mL vs. Date of Sample (2011)

TABLE 1 - ANOVA: Single Factor, qPCR

SUMMARY

••/////////////////////////////////////					
Groups	Count		Sum	Average	Variance
qPCR AM	2	22	53.18559135	2.41752688	1.468841003
qPCR PM	2	22	69.76056173	3.170934624	4.343360239

ANOVA

Source of							,
Variation	SS	df		MS	F	P-value	F crit
Between							
Groups	6.243855525		1	6.243855525	2.148533839	0.150153276	4.072653663
Within Groups	122.0562261		42	2.906100621			
Total	128.3000816		43				

2011 VB Model Pilot Study

VB Predictions vs. Colilert-18	
Correct, 42/46	91%
Incorrect, 4/46	9%
Type I, 2/46	4%
Type II, 2/46	4%

VB Predictions vs. qPCR CCE						
Correct, 43/44	98%					
Incorrect, 1/44	2 %					
Type I, 1/44	2 %					
Type II, 0/46	0%					

The predictive model constructed using Virtual Beach accurately estimated *E. coli* concentrations enumerated by culture-based (Colilert-18, 91%) and qPCR assays (98%).

Implementation - 2012

- Regulatory monitoring 5 days/week
 - Received approval as an ATP indicator/method combination in May 2012
 - 2 beaches
 - E. coli by qPCR (BioGx Smartbeads™: E. coli and Sketa)
 - Compare to culture 4 days/week
 - Compare to model 5 days/week
 - Compare E. coli/enterococci by culture (qPCR to follow)
 - Archived filters (Fall 2012)

Data Handling Reality Check

- Replicate analyses do not always agree
 - Open, advisory, closed, coin toss (?)
- Culture does not always agree with qPCR
- Results do not always make sense based on environmental conditions
- Inhibition
- False negatives w/o inhibition (algae blooms?)
- Filter blanks or NTC are contaminated
- Contamination as a result of visitors/observers not wearing PPE

The Way Forward

- What is the way forward for broader implementation?
- Further comparative studies
 - Know your beach
- Years of comparative data
- USE THE SANITARY SURVEY TOOL
 - Correlations b/w inhibition and ambient conditions
- Virtual Beach
 - Helps make sense of environmental conditions and analytical results

Points to Consider

- Make sure this analytical method works for you before you start the lab set up process
- Consult with proficient labs
- Exchange sample filters
- Future needs:
 - Sole source or approved QC materials
 - Accreditation
 - Laboratory Inspections
 - Staff Credentials
 - Proficiency Testing

Acknowledgements

- EPA Contract #EP115000072
- City of Racine, WI
- US EPA Office of Water, NERL, Region 5
- Tamara Anan'eva (qPCR Queen of the WI & EPA OW ORISE Intern)
- A long line of dedicated staff and students:
 - Jennifer Lavender
 - Michelle Leittl
 - Denny Mudd
 - Jenni Creekmur

