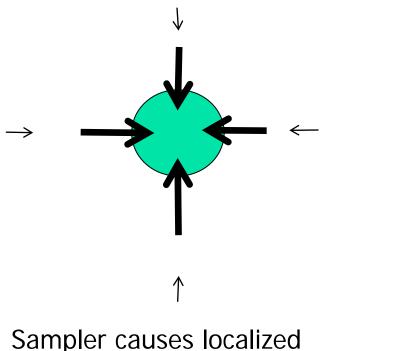

Quantitative Passive Soil Vapor Sampling for VOCs

Todd McAlary, Paul Nicholson and Hester Groenevelt, Geosyntec Consultants, Inc., Xiaomin Wang, Andre Unger, Suresh Seethapathy and Tadeusz Gorecki, University of Waterloo, and Ignacio Rivera-Duarte, SPAWAR Systems Center Pacific.

> National Environmental Monitoring Conference Washington, DC August 2012

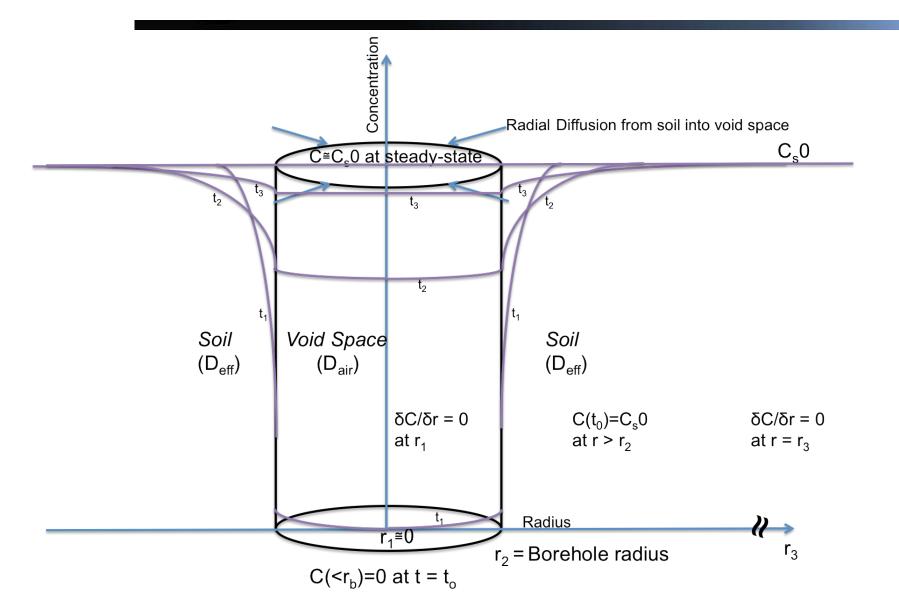
Quantitative Passive Samplers


Differences: size, uptake rates, sorbents, medium of uptake, method of analysis

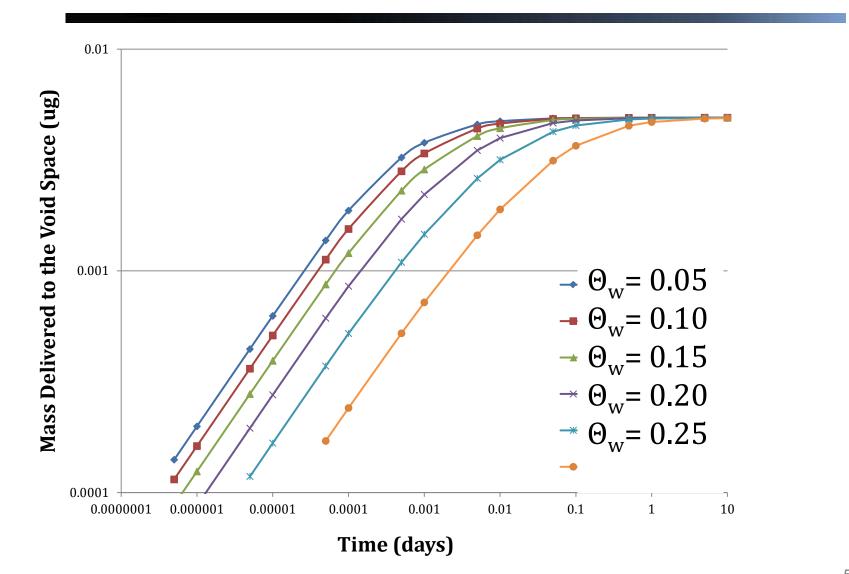
2

The "Starvation Effect"

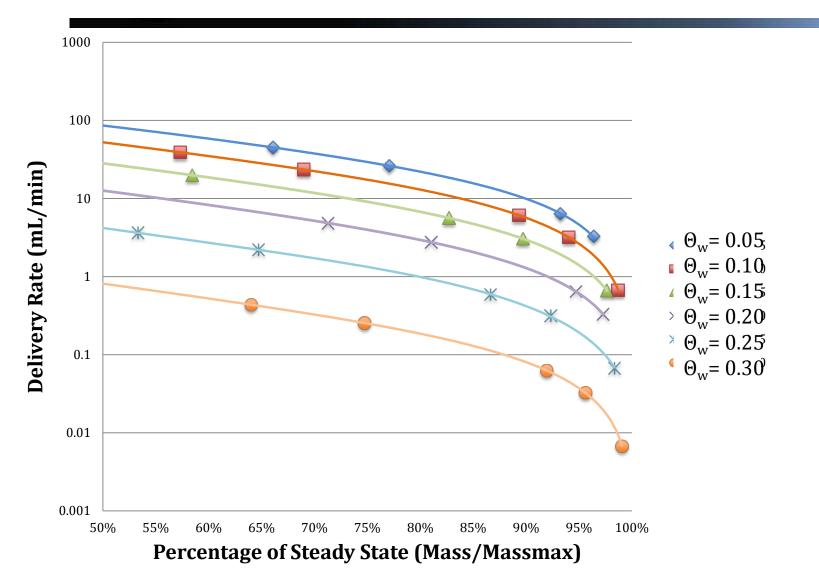
Sampler uptake rate is higher than rate of supply of vapors


Sampler causes localized depletion in vapor concentrations (i.e., "starves" the sampler)

Sampler uptake rate is lower than rate of supply of vapors No starvation


Transient Mathematical Model

4



Time to Steady-State

Geosyntec^D consultants

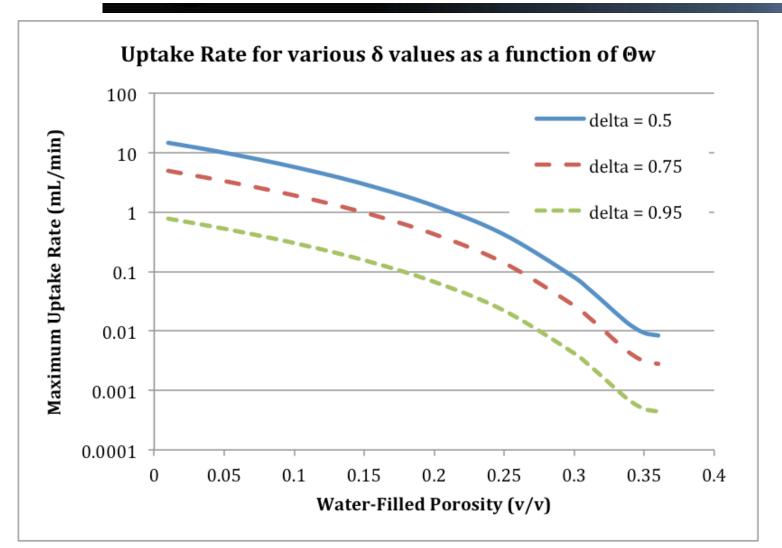
Delivery Rate of Vapors

Steady-State Model

The rate of mass delivery into the borehole
$$M1 = \frac{2\pi D_{eff}(C_{sg} - C_{bh})}{\ln(\frac{r_1}{r_2})}$$

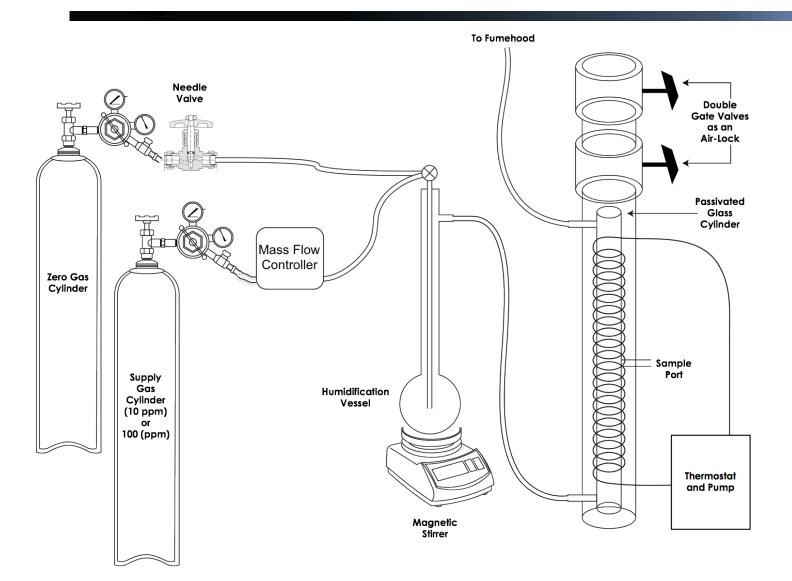
The rate of mass uptake by the sampler

 $M2 = C_{hh} \times UR$


Setting M1 = M2 gives:

$$UR\left[\frac{mL}{min}\right] = \frac{2\pi h[cm]D_{eff}[\frac{cm^2}{s}](1-\delta)}{\ln\left(\frac{r_2}{r_1}\right)\delta} \times 60[s/min]$$

Delta = vapor concentration inside borehole / vapor concentration in surrounding soil 7


Steady-State Model Results

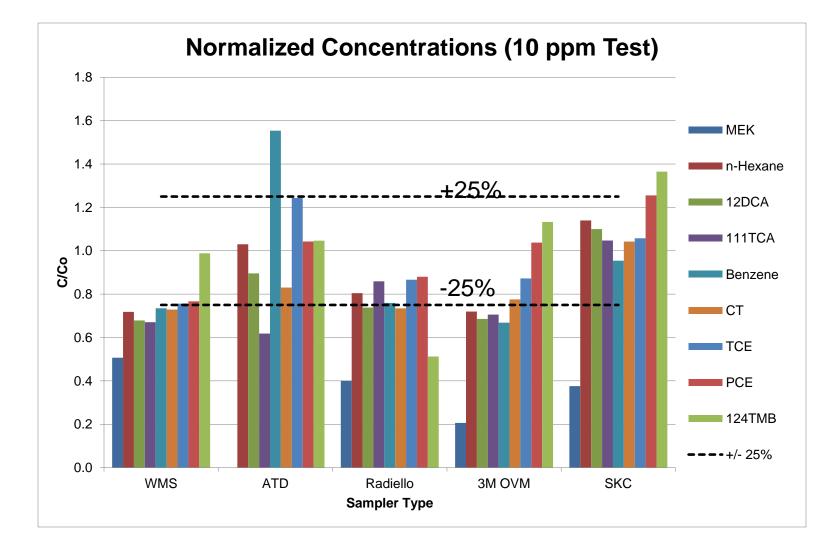
Delta = vapor concentration inside borehole / vapor concentration in surrounding soil 8

Laboratory Testing Apparatus

Laboratory Testing Apparatus

Laboratory Testing Apparatus

Concentration:1, 10, and 100 ppmvTemperature:ambientHumidity:90-100%Face velocity:very low (5x10⁻⁵ m/s)Exposure time:30 minutes



Laboratory Test Compound List

Analyte	Koc (mL/g)	Henry's Law Constant @ 25 °C (dim)	Vapor pressure (atm)	Pure Component Maximum Vapor Concentration (ppmv)	Water solubility (g/L)	OSWER Target Deep Soil Gas Conc'n (10-5 risk, AF = 0.01) (ppmv)
1,1,1-Trichloroethane (111TCA)	43	0.70	0.16	160,000	1.3	40
1,2,4-Trimethylbenzene (124TMB)	614	0.25	0.0020	2,000	0.057	0.12
1,2-Dichloroethane (12DCA)	39	0.048	0.11	110,000	8.6	0.023
2-Butanone (MEK)	4.5	0.0023	0.10	100,000	220	34
Benzene (BENZ)	146	0.23	0.13	130,000	1.8	0.098
Carbon tetrachloride (CTET)	43.9	1.1	0.15	150,000	0.79	0.026
Naphthalene (NAPH)	1540	0.18	0.00012	120	0.031	0.057
n-Hexane (NHEX)	132	74	0.20	200,000	0.0095	5.7
Tetrachloroethene (PCE)	94.9	0.72	0.024	24,000	0.21	0.12
Trichloroethene (TCE)	61	0.40	0.095	95,000	1.3	0.0041

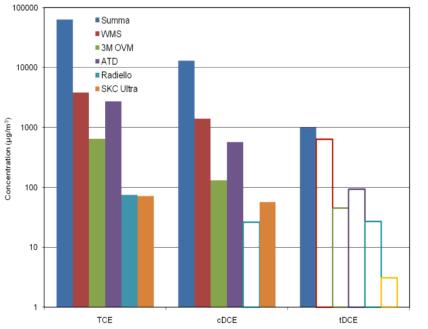
High Concentrations Test Results

Laboratory Testing Results

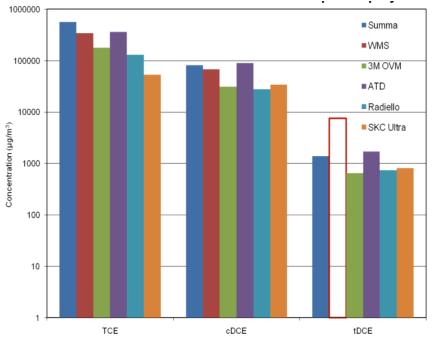
Accuracy: passive sampler concentration / Summa concentration

Overall Average C/Co	MEK	NHEX	12DCA	111TCA	BENZ	СТЕТ	ТСЕ	PCE	124TMB	NAPH	Average
WMS <u>Anasorb</u> 747	0.67	0.98	0.74	0.69	0.76	0.73	0.82	0.84	0.69	0.24	0.72
ATD Tenax TA	1.04	1.14	0.96	0.75	2.00	0.88	1.49	1.22	0.71	1.22	1.14
Radiello Charcoal	0.49	0.90	0.87	0.99	0.92	0.84	1.01	0.99	0.31		0.81
3M OVM 3500	0.24	0.74	0.72	0.75	0.79	0.77	0.92	1.06	0.79	0.46	0.72
SKC Carbograph	0.88	1.03	1.05	0.99	1.00	0.92	1.00	1.16	0.87	1.11	1.00

Precision: standard deviation divided by the mean (COV)


						_			```		
Overall Average	MEK	NHEX	12DCA	111TCA	BENZ	CTET	TCE	PCE	124TMB	NAPH	Average
WMS Anasorb 747	0.11	0.15	0.04	0.06	0.07	0.05	0.03	0.04	0.05	0.15	0.07
ATD Tenax TA	0.05	0.04	0.04	0.07	0.05	0.08	0.03	0.04	0.08	0.09	0.06
Radiello Charcoal	0.11	0.10	0.09	0.09	0.10	0.08	0.10	0.13	0.19	NA	0.11
3M OVM 3500	0.03	0.07	0.07	0.05	0.09	0.07	0.07	0.07	0.07	0.07	0.07
SKC	0.11	0.13	0.09	0.11	0.05	0.11	0.11	0.11	0.12	0.14	0.11
Summa Canister	0.11	0.07	0.09	0.08	0.09	0.08	0.09	0.14	0.22	0.26	0.12

Geosyntec^D



Fully-Passive Samples Starvation proportional to uptake rate

Sampling with continuous purging Less starvation for semi-passive samples

Modified Uptake Rates

Lower uptake rate = less starvation

SKC Ultra II and 12-hole Cap

ATD Tube & Pinhole Cap

WMS and Low-Uptake WMS

Sorbent Selection

Carbopack B

(Graphitized Carbon Black) Surface Area: 100 m²/g Desorption Temperature: 330 °C

	Challenge Volume (Liters)								
	0.2	1	5	10	20	100			
Halocarbon 12									
Chloromethane									
Halocarbon 114									
Vinyl chloride									
1,3-Butadiene									
Bromomethane									
Chloroethane									
Halocarbon 11									
Acrylonitrile									
1,1-Dichloroethene									
Methylene chloride									
3-Chloropropene									
Halocarbon 113									
1,1-Dichloroethane									
cis-1,2-Dichloroethene									
Chloroform									
1,2-Dichloroethane									
1,1,1-Trichloroethane									
Benzene									
Carbon tetrachloride									
1,2-Dichloropropane									
Trichloroethene									
cis-1,3-Dichloropropene									
trans-1,3-Dichloropropene									
1,1,2-Trichloroethane									
Toluene									
1,2-Dibromoethane									
Tetrachloroethene									
Chlorobenzene									
Ethylbenzene									
m & p-Xylene									
Styrene									
1,1,2,2-Tetrachlorethane									
o-Xylene									
4-Ethyltoluene									
1,3,5-Trimethylbenzene									
1,2,4-Trimethylbenzene									
1,3-Dichlorobenzene									
1,4-Dichlorobenzene									
1,2-Dichlorobenzene									
1,2,4-Trichlorobenzene									
Hexachlorobutadiene									

TENAX TA

(Polymer) Surface Area: 35 m²/g Desorption Temperature: 300 °C

	Challenge Volume (Liters)								
	0.2	1	5	10	20	100			
Halocarbon 12									
Chloromethane									
Halocarbon 114									
Vinyl Chloride									
1,3-Butadiene									
Bromomethane									
Ethyl Chloride									
Halocarbon 11									
Acrylonitrile									
1,1-Dichloroethylene									
Methylene Chloride									
3-Chloropropylene									
Halocarbon 113									
1.1 Dichloroethane									
cis-1,2 Dichloroethane									
Chloroform									
1.2 Dichloroethane									
1,1,1 Trichloroethane									
Benzene									
Carbon Tetrachloride									
1,2-Dichloropropane									
Trichloroethylene									
cis-1,3 Dichloropropene									
trans-1,3-Dichloropropene									
1.1.2-Trichloroethane									
Toluene									
1.2-Dibromoethane									
Tetrachloroethylene									
Chlorobenzene									
Ethylbenzene									
m,p-Xylene									
Styrene				_					
1,1,2,2-Tetrachlorethylene				_					
o-xylene				_					
4-Ethyltoluene									
1,3,5-Trimethylbenzene									
1,3,5-1 nmethylbenzene									
1,2,4-Trimethylbenzene									
				-					
1,4-Dichlorobenzene									
1,2-Dichlorobenzene									
1,2,4-Trichlorobenzene									
Hexachloro-1,3-butadiene									

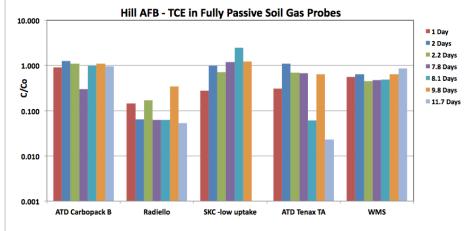
Performance Key

Safe to use: Recovery is greater than 80% Caution: Recovery is between 21 to 79% Not Recommended: Recovery is less than 20% * indicates this analyte was strongly adsorbed

Performance Key

Safe to use: Recovery is greater than 80% Caution: Recovery is between 21 to 79% Not Recommended: Recovery is less than 20% * indicates this analyte was strongly adsorbed

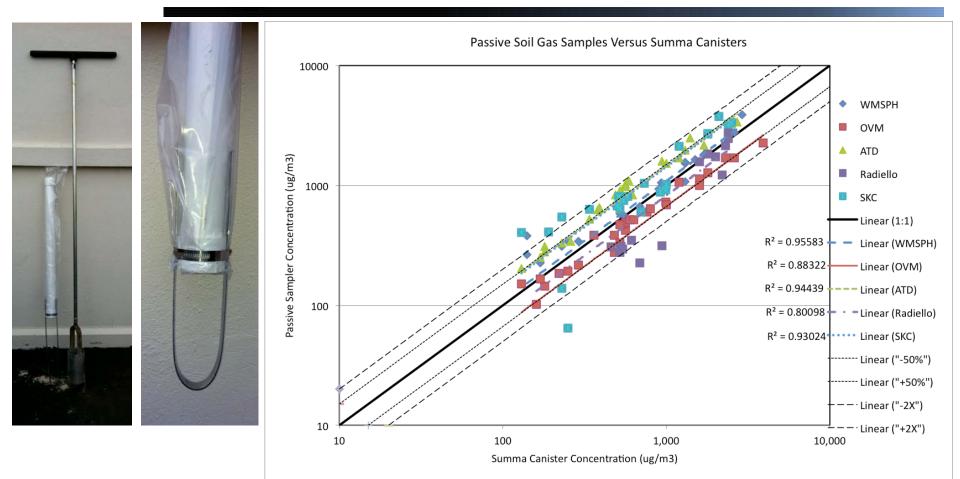
Soil Gas @ 12 ft – Hill AFB


6 probes -12 ft deep

Latin Square Design

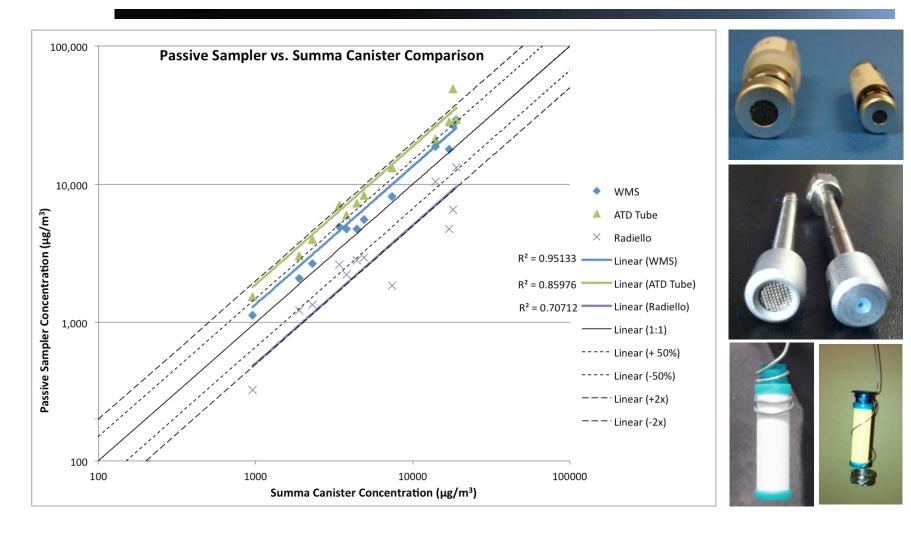
1 to 12 day exposures

C_o Measured using combination of Summa and Hapsite GC/MS

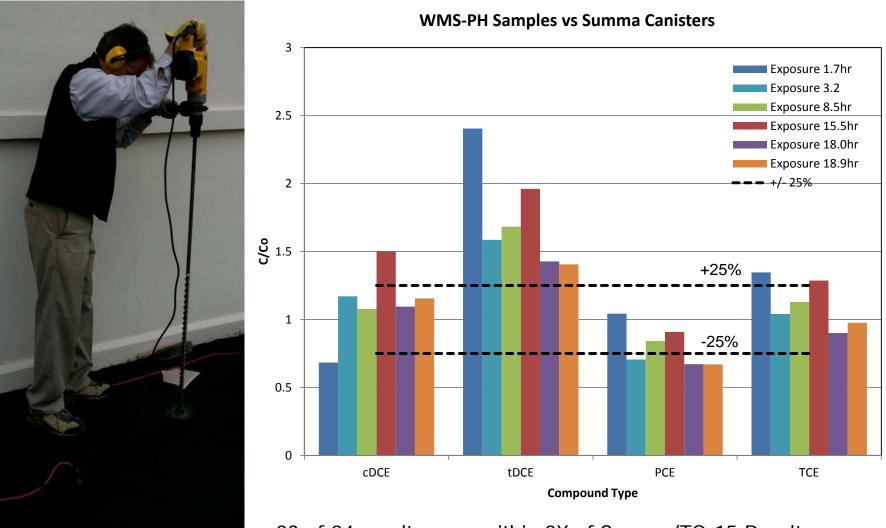

Hill AFB - 1,1-DCE in Fully Passive Soil Gas Probes 10.000 1 Day 2 Days 2.2 Davs 1.000 7.8 Days 8.1 Days 0°/0 9.8 Days 11.7 Davs 0.100 0.010 0.001 ATD Tenax TA ATD Carbopack B Radiello SKC -low uptake WMS

Negative bias for long duration with ATD-Tenax Negative bias for high uptake rate (Radiello) Otherwise, encouraging results for TCE and DCE

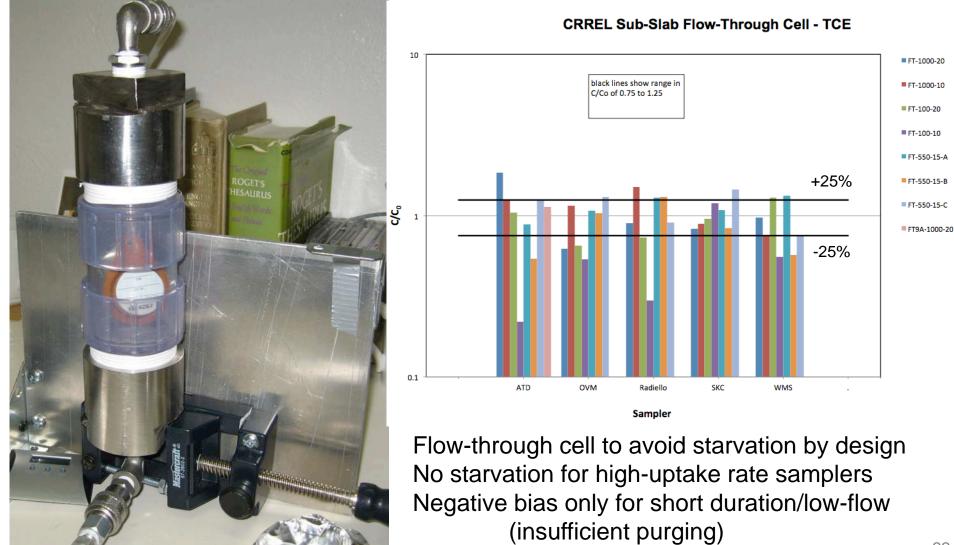
Geosyntec^D


Soil Vapor Sampling – NAS JAX

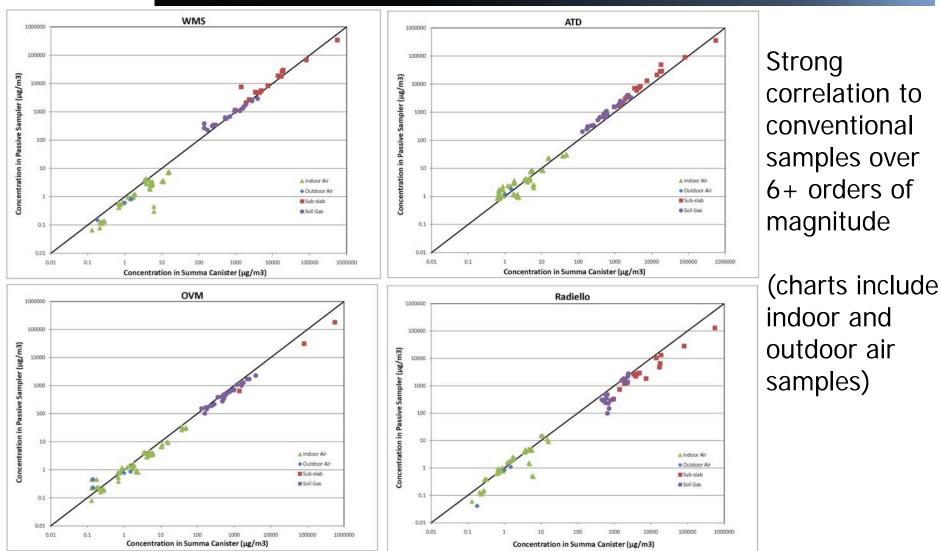
Probes to 3-4 feet deep, exposure durations of 20, 40 and 60 minutes Strong correlations, regression slopes all near 1.0


Passive Sub-Slab – NAS JAX

Limited to 1-inch diameter or less – Low-Uptake Rate Samplers


Temporary Passive - NAS JAX

23 of 24 results were within 2X of Summa/TO-15 Results



Flow-Through Cell – CRREL

Overall Correlation between Passive and Active Samplers

Maybe we don't need to be using so many Summa Canisters

Cost Comparison

Simple comparison:

- 6 indoor samples
- 2 outdoor samples
- 6 sub-slab samples

Summa	WMS	Radiello	ATD	3M OVM	SKC
\$6,810	\$3,670	\$3,590	\$3,590	\$3,610	\$4,100

Approx. 50% cost for passive samplers versus Summa cans

(even with some side-by-side Summa cans for benchmarking, you can still save a lot of money)

Benefits of Passive Sampling

- Simple (minimal training, less risk of leaks)
- Low reporting limits with no premium cost
- Smaller easy to ship
- Long shelf-life and hold-time
- Long history of use in Industrial Hygiene
- Less expensive overall
- Other benefits unique to each sampler

Take-Home Messages

Passive Sampling is becoming a reality for VI assessment

- Strong positive correlation with Summa cans
- Generally good consistency, but sensitive to wind, rain, temp.
- Minimize variability:
 - Integrate over time to manage temporal variability for indoor air
 - Simpler protocols for soil gas sampling less operator error
- Benchmarking is recommended in the near-term
 - 1 of 10 samples collected with a duplicate by Summa/TO-15
 - Accounts for site-specific conditions, challenging compounds
- Study design takes a little more thought
 - Different samplers have different pros and cons
 - Cost savings make it well worthwhile

Acknowledgments

Funding gratefully acknowledged from:

- ESTCP ER0830
- U.S. Navy Environmental Sustainability Development to Integration (NESDI) Program
- U.S. Army Corps of Engineers
- Ontario Ministry of the Environment
- Anadarko Petroleum Corporation
- Geosyntec Consultants, Inc.
- Collaborators:
 - Heidi Hayes (Air Toxics/Eurofins), Paolo Sacco (Fondazione Salvatore Maugeri), Derrick Crump (Cranfield U), Michael Tuday (Formerly of CAS), Brian Shumaker (USEPA), Paul Johnson (ASU)

Questions/Comments?

tmcalary@geosyntec.com