Spatio-temporal variability of tetrachloroethylene (PCE) in indoor air due to vapor intrusion

A community based, longitudinal approach

Jill Johnston, PhDc University of North Carolina – Chapel Hill NEMC 2012

OUTLINE

- Background
 - Challenges in defining exposure due to vapor intrusion
- Objectives
- Methodology
 - Passive sampling of indoor air
 - Indoor air source identification
 - Data analysis & regression model
- Results & Conclusions

BACKGROUND

VAPOR INTRUSION

- Huge number of potentially at risk buildings
- Incomplete understanding of the pathway
- Regulatory process requires
 - Determination of whether the pathway is complete
 - If complete, determination of exposure levels and if buildings require remediation

ESTIMATING EXPOSURE

- Indoor air measurements are a key *line of evidence* to evaluate the vapor intrusion pathway
- House-specific pathway

 Difficult to predict
- Analysis requires robust data sets
 - Ability to measure very small concentrations
 - Identify/remove indoor sources
 - Invasive evaluation technique

CHALLENGES

- Models are imperfect
- Significant spatial variability across a community
- Temporal variability in vapor intrusion potential
 - Diurnal patterns
 - Seasonal patterns
 - Evidence of short windows of high exposure
 - Over one order magnitude change within 48 hrs
- Current approaches don't provide complete picture of potential vapor intrusion problem in a particular house or a neighborhood

STUDY SITE

KELLY AIR FORCE BASE

- In operation from 1917-2001
- Logistical HQ for the Air Force
- Used PCE on-site
- Caused contamination in shallow aquifer
- Over 31,000 homes sit above plume

PCE PLUME

1000 ppb

1 ppb

- 12 square mile PCE plume
- Extends 5 miles from source
- Some plume retraction since remediation

SITE CHARACTERISTICS

- One of the first studies in a Southern climate
- Navarro clay soil
- Typically shallow aquifer, largely rain fed
- 95% Latino, working class community

~ 70% homes crawl space ~ 30% cement slab

Older housing stock ('30s-'60s)

PREVIOUS DATA

 EPA study (2008-2009) found elevated levels of PCE and TCE in indoor air and crawl space

- Confirmed a complete pathway

STUDY Objectives

POLICY QUESTIONS

- What factors influence the shortterm temporal variability of indoor air concentrations of PCE due to vapor intrusion?
- What techniques can help construct a better picture of exposure?
- How can measurement approaches better integrate community and household participation?

RESEARCH OBJECTIVE

 Integrate a longitudinal crosssectional design to:

 Determine the indoor concentrations of PCE attributable to vapor intrusion

- Evaluate the factors that influence temporal variability

- Demonstrate a communityoriented research design approach

METHODS

STUDY DESIGN

- Partnership with local organization to identify homes in at-risk areas
 - Live in the affected community
 - No smokers in the home
- 20 homes from 4 neighborhoods
- Sampled in July and August 2011
- Subset of 9 re-sampled in February 2012
- Completed survey on household characteristics and daily activity patterns (use of dryer, ventilation, HVAC systems, etc)

SAMPLING DEVICE

- Passive approach
 - No electricity or pumps
 - Comparable results to active sampling
- Stainless steel tubes packed with engineered adsorbent
- Beacon Environmental Services
- Community members assisted with sampling

PROTOCOL

- Duplicate 72-hour samples
- 8-9 sampling periods per home
 - Additional 4 samples from 9 homes in Feb 2012
- Analyzed following EPA TO-17 guidelines
 - Re-collection to allow for secondary analysis
- Concentrations calculated according to established uptake rates
 - Detection limit, on average, 0.13 ug/m³

Freestanding apparatus located in breathing zone

SOURCE IDENTIFICATION

- Identified and removed potential confounding indoor sources
 - Portable air sampler used to 'sniff' for PCE
 - Removed potential sources for duration of the study
 - Removed any dry cleaned items
 - Placed monitors after completion of tests for indoor sources
- Interference of air fresheners

RESULTS

STUDY LOCATIONS

PCE INDOORS OVER TIME

RESULTS: SUMMARY STATS

Variables	Mean All samples (n=170)	Mean Above detection (n=150)	
Barometric pressure (in Hg)	29.88	29.89	
Wind speed (mph)	54.4	54.5	
Household Characteristics			
Crawl space foundation	0.68	0.51	
Central A/C	0.32	0.33	
Open windows	0.35	0.33	

Evidence of low levels of vapor intrusion in 12 out of 20 homes studied

CONCEPTUAL MODEL

TEMPORAL APPROACH

- What causes changes over time within each home?
- Fixed effect regression approach

 $PCE_{i,t} = \alpha_i + B_1 pressure_{i,t} + B_2 windspeed_{i,t} + B_3 humidity_{i,t} + B_2 season_{i,t} + \varepsilon_{i,t}$

- House *i*, time *t*
- Examine association between vapor intrusion and weather conditions (barometric pressure and wind speed)
- Estimate house-specific intercept (α_i) for each chemical
- Time invariant factors (soil, foundation, etc) do not bias the model

REGRESSION CONCEPT

PCE concentration

Average slope = marginal effect of covariate

Intercept, α_i = 'fixed effect'

Model not biased by unobserved time invariant characteristics

Model covariate

NON DETECTION ISSUE

 Ignoring or assigning a common value (1/2 detection limit) biases the results

Truncated data regressions (left censored data)

- Unbiased maximum likelihood model

- Likelihood function for censored data represented as a probability of being less than the detection limit (tobit model)

• Log transformed dependent variable

- Indoor air concentration of PCE due to vapor intrusion (log-ug/m³)
- robust standard errors

TEMPORAL MODEL RESULTS

Association between barometric pressure and log indoor PCE concentrations due to vapor intrusion

Highest concentrations within a home in high pressure, low wind conditions during the summer season

Variables	Marginal effect (n=120)
Barometric pressure (in Hg)	3.58**
Wind speed (mph)	-0.065*
Relative Humidity (%)	0.018*
Summer	1.14**
<pre>** p<0.05 * p<0.10 (clustered robust standa)</pre>	ard errors)

SPATIAL MODEL

SPATIAL MODEL RESULTS

Variables	Average Marginal Effect (n=170)
PCE in groundwater (ug/L)	0.29**
Groundwater level (ft)	-0.06
Central A/C	0.21
Crawl Space Foundation	0.38**
Silt Soil	0.29
Barometric pressure (in Hg)	3.45**
Wind speed (mph)	-0.10*
Summer	0.50*
** p<0.05 * p<0.10 (clustered robust standard errors)	

Population average approach accounting for data censoring

Higher Risk:
PCE groundwater concentration increases
Pressure increases
Crawl space foundation

INSIGHTS

- Protocol adherence facilitated by simplicity of sampling devices and integration of local organizations
 - Potential for community-led research with passive devices
- PCE concentrations in indoor air vary 2x-3x over a short time period
- Single 24-hour sample of indoor air may not be representative of exposure
- Predictive models may be improved with increased understanding of the association between meteorological conditions, household characteristics, and indoor air concentrations

ACKNOWLEDGEMENTS

- Dr. Jackie MacDonald Gibson & Research Lab
- National Science Foundation Graduate Research Fellowship Program
- Harry O'neill & Beacon Environmental Services
- Southwest Workers Union
- Committee for Environmental Justice Action
- Robert Alvarado, Jessica Garcia, Sandra Garcia, Juan Rodriguez, Tyler Fitch, Dami Olagunju

THANKS! QUESTIONS?

Jill Johnston, PhDc

jillj@email.unc.edu

University of North Carolina at Chapel Hill