

Developing a Reference Material for VOC Emissions Testing

Andrew Persily and Cynthia Howard-Reed

Indoor Air Quality and Ventilation Group
National Institute of Standards and Technology
Gaithersburg, MD

Acknowledgements

WirginiaTech

- John Little, Steve Cox, Zhe Liu
- Air Quality Sciences
- BAM German Federal Institute for Materials Research and Testing
- Berkeley Analytical Associates
- National Research Council Canada

Problem – Building Materials Perspective

- VOC emissions from building materials have been measured since the late 1970s.
 - Proliferation of "green" labeling programs
 - Many different chamber emissions test methods with no standard approach for test method validation

What is the true value?

Can the variability between labs be improved?

Reference Material Development

Key Definitions:

Reference material: a material or substance with one or more property values sufficiently **homogeneous** and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials. [ISO VIM: 1993, 6.13 [7]]

Reference value: a best estimate of the true value and associated uncertainty provided on a NIST certificate where all known or suspected sources of bias have not been fully investigated by NIST.

Desired Qualities of Reference Materials

- Independent knowledge of emission rate
- Easily reproducible with consistent performance
- Factors affecting emission rate well understood
- Mimics mass transfer processes of indoor materials (may require several materials)
- Sized for small and large chambers
- Emits a range of VOCs
- Stable with a predictable shelf-life

Reference Material Development Approach

- Select a suitable material
- Load the material with VOC at constant concentration
- Distribute reference material to different laboratories for chamber emission tests
- Establish "reference value"
 - NIST-only measurement
 - Inter-laboratory measurements
 - Predict the emission profile of the material with mechanistic model using independently measured material characteristics.

Material Selection

- Uniformity
- Purity
- Stability
- Similar emission profiles to indoor VOC sources

Polymethylpentene (PMP)

Loading VOC into the Material

Loading VOC into the Material

Distributing Loaded Materials

Emission Chamber Test

• ASTM Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products (ASTM D5116-10)

Predicting Emission Profiles

Predicting Emission Profile

$$C(x,t) = 2C_0 \sum_{n=1}^{\infty} \left\{ \frac{\exp(-Dq_n^2t)(h - kq_n^2)\cos(q_nx)}{[L(h - kq_n^2)^2 + q_n^2(L + k) + h]\cos(q_nL)} \right\}$$

$$h = \frac{Q}{ADK}$$

$$k = \frac{V}{AK}$$

$$q_n \tan(q_n L) = h - kq_n^2$$

$$y = \frac{C|_{x=L}}{K}$$

Characterizing Emission Parameters

NIST Chamber and Model Results

Publication:

Cox, S.S., Liu, Z., Little, J.C., Howard-Reed, C., Nabinger, S. and Persily, A. (2010) "Diffusion-controlled Reference Material for VOC Emissions Testing: Proof of Concept," *Indoor Air* **20**: 424 – 433.

Pilot Inter-laboratory Study #1

- Four North American laboratories (chamber volumes 0.05 m³ to 0.086 m³)
- Each lab tested 4 reference films (2 films from 2 production batches)
- Specified
 - Chamber conditions: temp = 23 °C, RH = 50 %, airflow rate = 0.065 m³/h, mixing fan = off
 - Test method: sample preparation and orientation in chamber, sample collection times (11 samples collected between 0.5 h – 54 h), liquid standard to check analytical calibration

Pilot ILS #1 Results

Publication:

Howard-Reed, C., Liu, Z., Benning, J., Cox, S., Samarov, D., Leber, D., Hodgson, A., Mason, S., Won, D., and Little, J.C. (2011) "Diffusion-controlled Reference Material for VOC Emissions Testing: Pilot ILS," *Building and Environment*.

Factor Tests: Sample Age

Publication:

Howard-Reed, C., Liu, Z., Cox, S.S., Samarov, D., Leber, D., and Little, J.C. (2011) "Assessing the shelf-life of a prototype reference material for product emissions testing," in Proceedings of Indoor Air 2011, June 2011.

Pilot Inter-laboratory Study #2

- NIST (51 L chamber) and BAM German Federal Institute for Materials Research and Testing (24 L chamber)
- Each lab tested 3 reference films (all from the same batch)
- Specified
 - Chamber conditions: temp = 23 °C, RH = 50 %, airflow rate = 0.065 m³/h, mixing fan = on
 - Test method: sample preparation and 2-side orientation in chamber, sample collection times (11 samples collected between 0.5 h – 54 h)

Pilot ILS #2 Results

Publication:

Howard-Reed, C., Liu, Z., Cox, S.S., Little, J.C., Horn, W., Wilke, O., Wiegner, K., and Persily, A. (2011) "Inter-laboratory study approach to validate the performance of a prototype reference material for product emissions testing," in Proceedings of Indoor Air 2011, June 2011.

International Inter-laboratory Study

- 14 laboratories representing 7 countries
- 10 "small" chambers and 4 "large" chambers
- Each lab ran 2 reference film tests (all films made in the same batch)
- Specified
 - Chamber conditions: temp = 23 °C, RH = 50 %, airflow rate = 0.055 m³/h for small chambers and 0.30 m³/h for large chambers
 - Test method: sample preparation and 2-side orientation in chamber, sample collection times (duplicate samples collected at 24 h, 48 h, and 72 h)

International ILS Emission Rate Comparison

Next Steps

- Further improvement tests underway
 - Improved packaging
 - Temperature, RH, airflow effects on emissions
- Add more chemicals to the film
 - Formaldehyde
 - Butanol
 - Dodecane
- Transition to production phase

