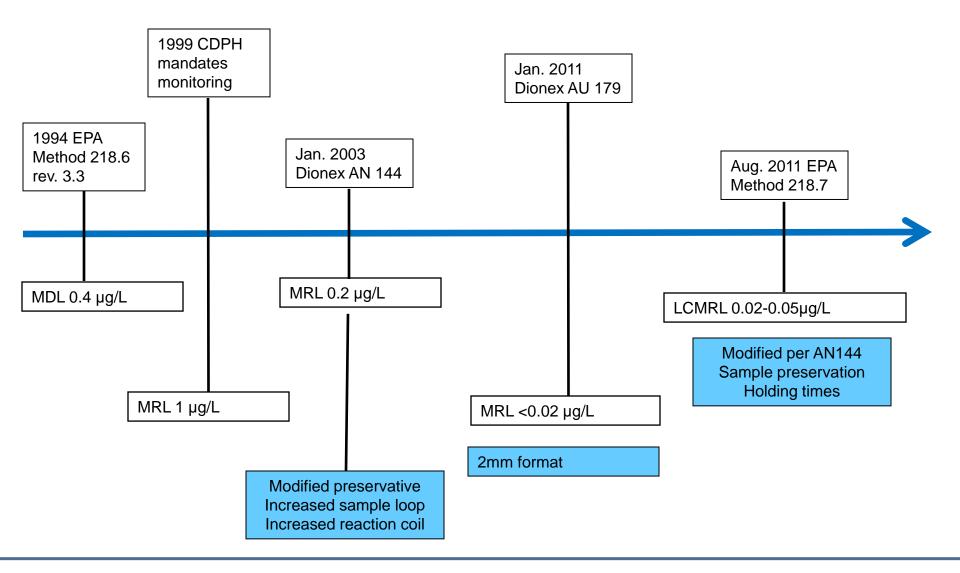
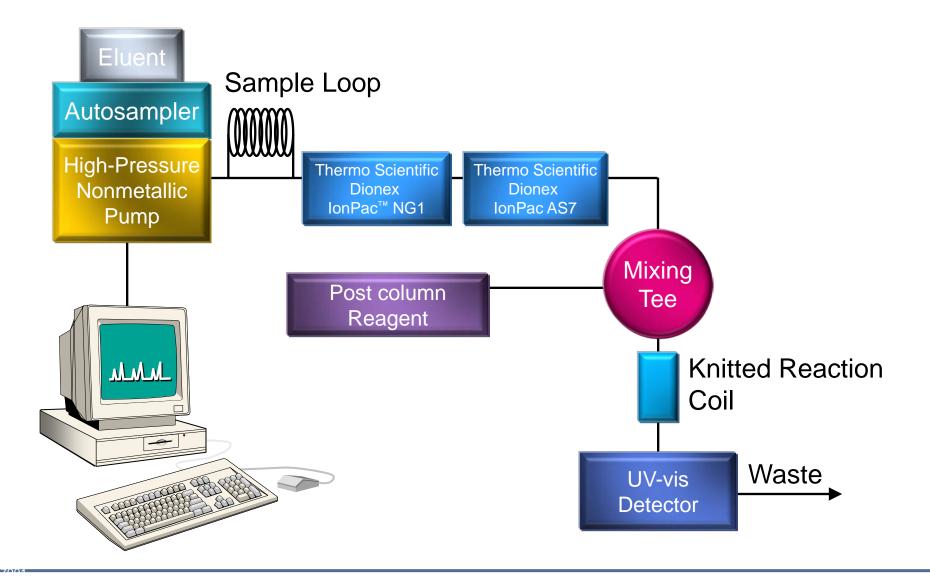

Caterina Giuriati, Syndial, Ferrara, Italy

- Hexavalent Chromium
 - Background
 - Current Methods
- Analysis Improvements
 - EPA 218.6, 218.7, 7136,
- Soils extraction using EPA 3060A
 - Interferences, challenges
- Conclusions



Cr(VI) Regulatory Timeline

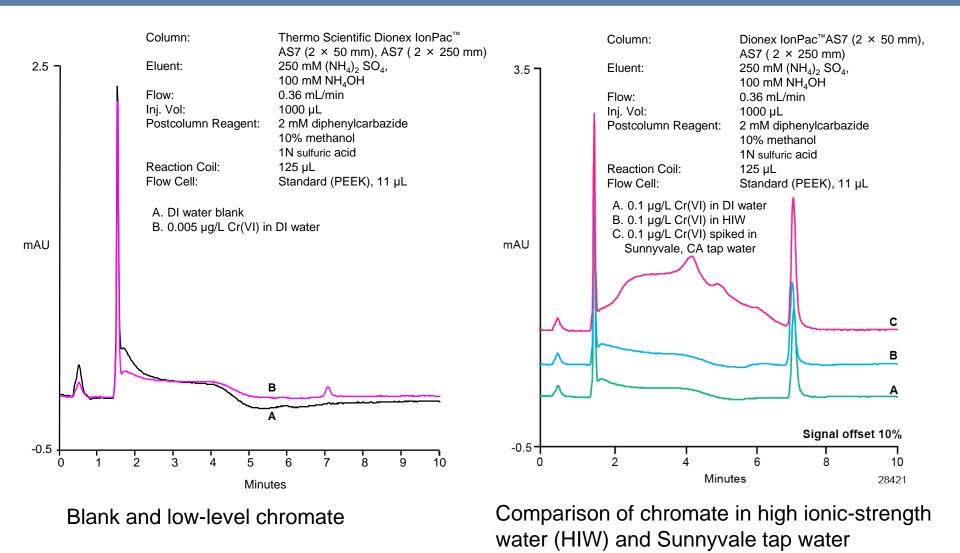
15 + year Analytical Timeline for Cr(VI) in Water



Summary of Methodologies for Chromium VI Analysis

EPA Method	Sample Types	Sample Conc. Limits (µg/L)	Technique	MDL
218.6	Drinking Water, Groundwater, Industrial Effluents	-		0.3 μg/L (0.001 μg/L with modifications outlined in Dionex AN 179)
218.7	Drinking Water	-	IC with post column	
1636	Ambient Waters (river/lake water)	-	derivatization	
7199	Drinking Water, Groundwater, Industrial Effluents	-		
218.4	Drinking Water, Surface/Saline Water	10 - 250	Chelation Extraction	10 – 25 μg/L
7197	Ground Water, Leachates, Soils	1 - 25	with Flame AA	
7196	Ground Water, Leachates, Soils	500 – 50,000	Colorimetric Analysis	<50 µg/L
7195	Ground Water, Leachates, Soils	>5	Co-precipitation with AA	10 – 25 μg/L

System Configuration for Hexavalent Chromium by U.S. EPA Method 218.6



Achieving a Lower Method Detection Limit (MDL)

Method	Column Set	Reaction Coil Volume (μL)	Eluent Flow Rate (mL/min)	Postcolumn Flow Rate (mL/min)
Modified Version of 218.6	Thermo Scientific Dionex IonPac [™] NG1 Guard 4 × 50 mm Dionex IonPac AS7 Analytical 4 × 250 mm	750	1.0	0.3
AU179	Dionex IonPac AG7 Guard 2×50 mm Dionex IonPac AS7 Analytical 2×250 mm	125	0.36	0.12

Chromate Detection

1 ppt Detection can be achieved!

CIENTIFIC

Analytical Issues involving Cr(VI) determination in water

- IC is extremely sensitive and can measure down to 1ppt MDL
- Cr(VI) is very stable in most waters
 - Holding time in EPA 218.7 is 14 days
- Cr(VI) contamination has been found in chemicals used for eluents and preservation buffers
- EPA 218.7 allows easier pH adjustment to pH 8.0
 - Also uses weaker buffers to prevent column overloading
- Free chlorine will oxidize Cr(III) to Cr(VI)
 - Need to minimize impact with NH₄SO₄ addition to form chloramines
 - Chlorine must be <0.1 ppm prior to collection
- Filtering samples is not required
- Preservative is prepared once every 30 days
 - Can add preservative to bottles prior to sample addition
- Chilling of samples is not required.

Cr(VI) from soil

- Step 1: Extraction Method 3060A alkaline digest
 - Extraction also removes anions and metals in the soil sample
 - redox, pH, sulfides, Mg²⁺, Fe²⁺ affect extraction, oxidation and reduction between Cr(III) and Cr(VI).
- Step 2: Analysis Method 7199 IC with post column same as EPA 218.6
- Under reporting in soil extracts

Focus has been on Analysis Techniques

Sample Preparation...

Sample Preparation: What and Why

- Prepare sample for analysis
 - Concentrate analytes
 - Eliminate matrix effects
- Sample Prep is...
- Most time consuming part of analytical procedure (61%*)
- Single largest source of errors(<30% by some reports**)

*Majors, R.E. *LC-GC*, **1995**, *13*, 742-749, and **Majors, R.E. *LC-GC*, **1999**, *17*, S8 - S13

Importance of Sample Preparation

"Eighty Percent of the Variance in an Assay Usually Arises from the Sample Prep."

R. Stevenson, "Pittcon® '98: Part 3 Sample Prep: The Place to Make a Difference" <u>American Laboratory</u>, Vol. 30, No. 14 p.21, 1998

EPA 3060A

- Alkaline digestion for Hexavalent Chromium
- Designed for soil, sludges, and sediments.
- Must meet 3 criteria
 - 1. The extracting solution must solubilize all forms of Cr(VI),
 - 2. The conditions of the extraction must not induce reduction of native Cr(VI) to Cr(III),
 - 3. The method must not cause oxidation of native Cr(III) contained in the sample to Cr(VI).

3060A

- Procedure
 - 2.5 g sample
 - 50 mL \pm 1 mL of digestion solution
 - 400 mg MgCl₂
 - 0.5 mL phosphate buffer
 - Heat digestion solution to 90 95^C for 60 minutes
 - Let cool, rinse vessel 3x
 - Filter through a 0.45 μ m filter
 - pH adjust to 7.0 for 7196, pH 9.0 for 7199

- Results from soil extracts
- Second extraction resulted in more Cr(VI) suggests that extraction is inefficient

Eluent	NIST Standard Soil 2701 (550 mg/Kg per ICP- MS)	Cr(VI) (mg/kg)	Cr(VI) (mg/kg) (total from 2 extractions)
NH ₄ OH and (NH ₄) ₂ SO ₄	550	384	458

ASE 350 and 150

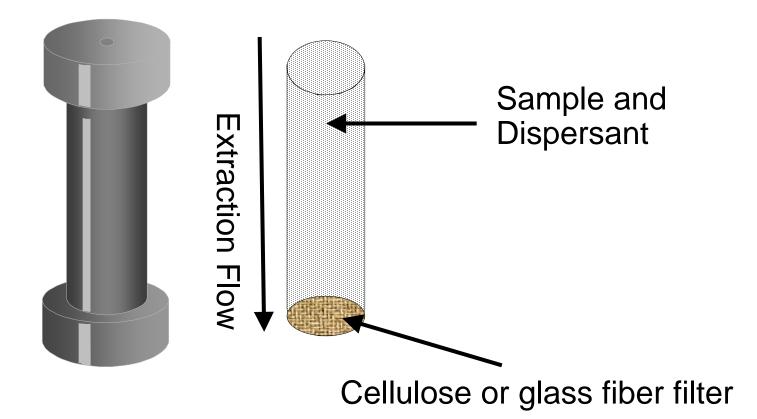
• Goal: Automate 3060A using Accelerated Solvent Extraction

What Is ASE?

- A device that automates sample preparation for solid samples using solvent extraction
- Operates above the boiling point of most extraction solvents
- Pressure is used to keep solvents liquid during extraction

ASE is approved as US EPA Method 3545A Pressurized Fluid Extraction

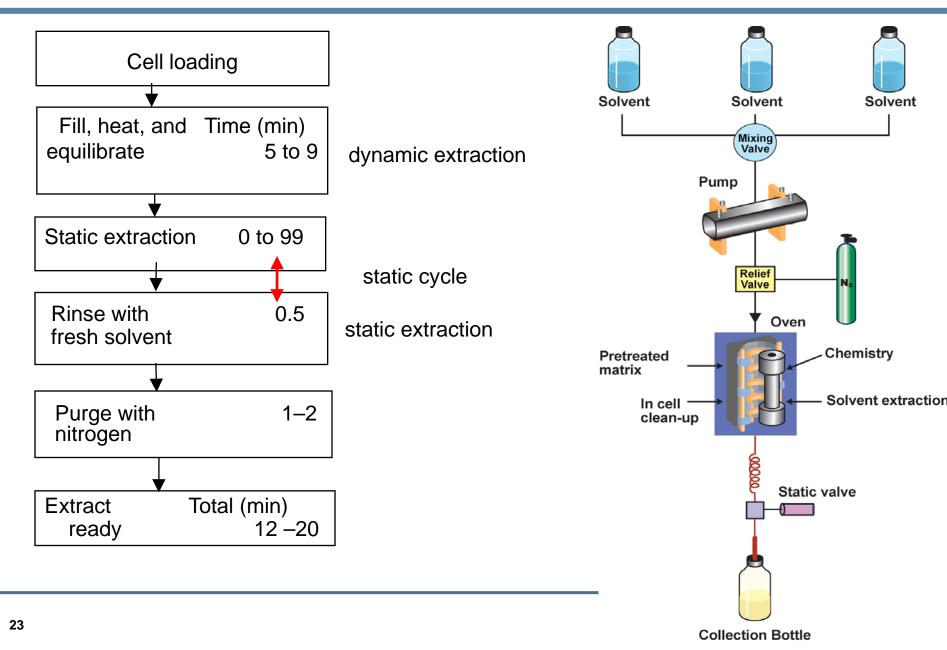
 A procedure for extracting water insoluble or slightly water soluble semivolatile organic compounds from soils, clays, sediments, sludges, and waste solids.



Examples of Metal Extraction using ASE

- Pressurized Extractions for the Remediation of Heavy Metal contaminants in Soil and Sediments.
 - Pb, Mn, Cu
- Selenium Speciation analysis of selenium enriched supplements by HPLC with ultrasonic nebulization ICP-MS and MS-MS
- Simultaneous Extraction of Organometallic species of As, Se, and Hg by Accelerated Solvent Extraction and analysis by ICP-MS coupled to Liquid and Gas chromatography

Schematic of ASE Cell

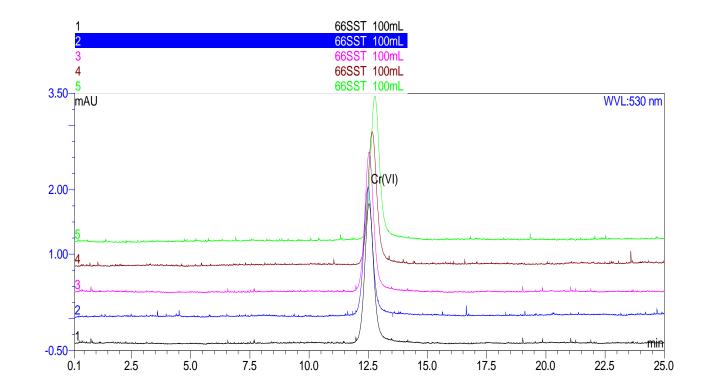


- First generation extraction cells are stainless steel
- Second generation are Dionium Cells, a zirconium alloy
 - A new alloy specifically developed for high and low pH extractions
- Allows acidic or alkaline pretreated samples
- Improved overall longevity of system

ASE[®] Schematic

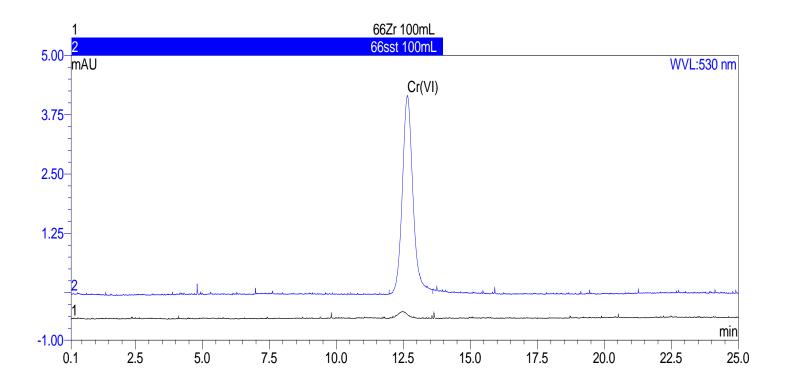
ASE Extraction Conditions

- Extraction Solvent: 10mmol/L NaOH, 4g/L NaCl (pH>11.5)
- Extraction Temperature: 100°C
- Pre-heat time: 5min
- Static Extraction Time: 5min
- Cycle Time: 2
- Flush Volume: 60%
- Purge Time: 90s
- Extraction Cell: 66mL cell
- Total extraction time: about 20 min
- Automation allows multiple extractions without labor


Sample Preparation

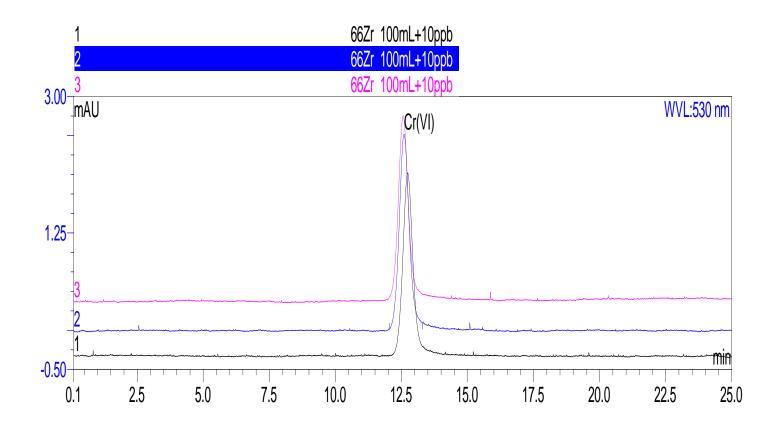
- Soil samples were dried at of 50°C,
- Pulverized
- 10g soil sample, mixed with quartz sand and filled to 66mL Zr extraction cell,
- ASE extracted
- Analysis by EPA 7199 (Ion Chromatography)

Results from Blanks


- Stainless Steel extraction cell
- 19 µg/L

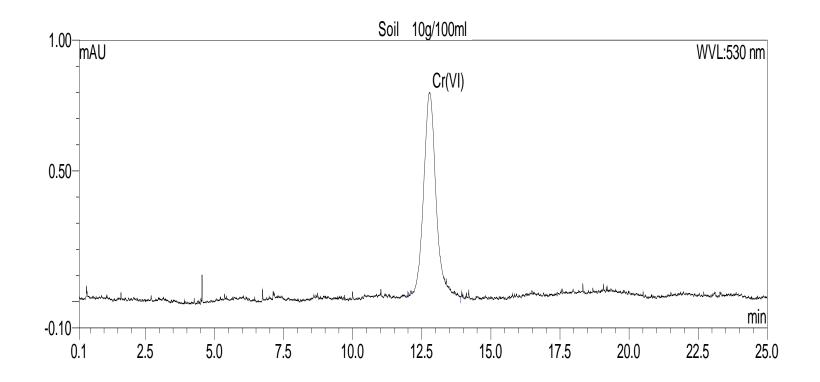
Results from ASE Cell Blanks

- Comparison between stainless steel vs. Dionium extraction cells
- Dionium cell 0.9 μg/L


Table1. Recoveries and their relative standard deviations (n=3)

Added	Recovery/ %	Avg. Recovery/%	RSD
	105.6		
10 μg/L	107.2	105.2	2.2%
	102.6		
	104.6		
100 μg/L	105.4	105.1	0.4%
	105.4		

Results of Spiked Samples


• Chromatograms of spiked quartz sand (added 10 μ g/L)

Results

• Soil sample

Conclusions

- Preliminary results show that ASE can be used to extract hexavalent chromium from soil and spiked quartz
- Background issue
- Further studies will attempt using NIST standards and different soil matrices.
- Eventual goal to develop ASE method for EPA's ATP approval.

Thank You!

