environmental • failure analysis & prevention • health • technology development

A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.

Field Measurement of Total Petroleum Hydrocarbons in Crude Oil-impacted Soils

Jaana Pietari, Exponent Thomas Hoelen, Chevron Kirk O'Reilly, Exponent

August 9, 2012

INTRODUCTION

3

E^xponent[•]

Field Test Kits (FTKs) for Petroleum Hydrocarbons

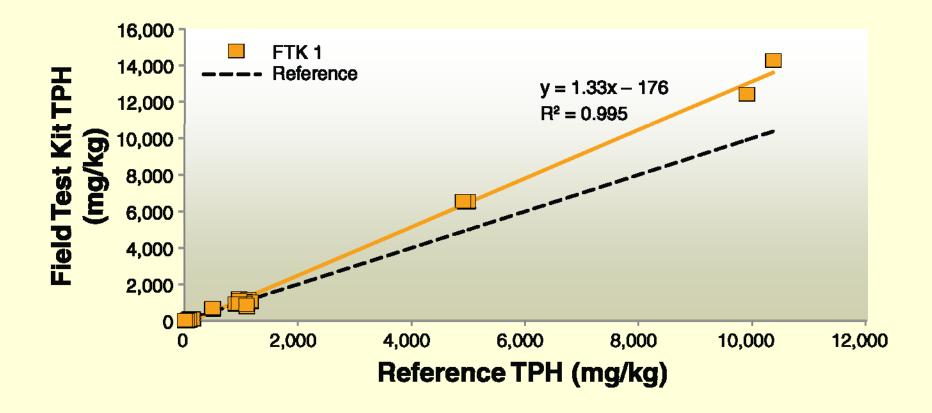
- Onsite analytical devices can provide near-real time information so that decisions can be made onsite
- (Potentially) lower cost allows more samples to be collected, therefore, less uncertainty for delineation

E^xponent

EPA Sponsored Study

- Innovative field measurement technologies for TPH in soils
 - Seven devices evaluated
 - Summary reports in 2001
 - Focus on soils with weathered gasoline and diesel impacts

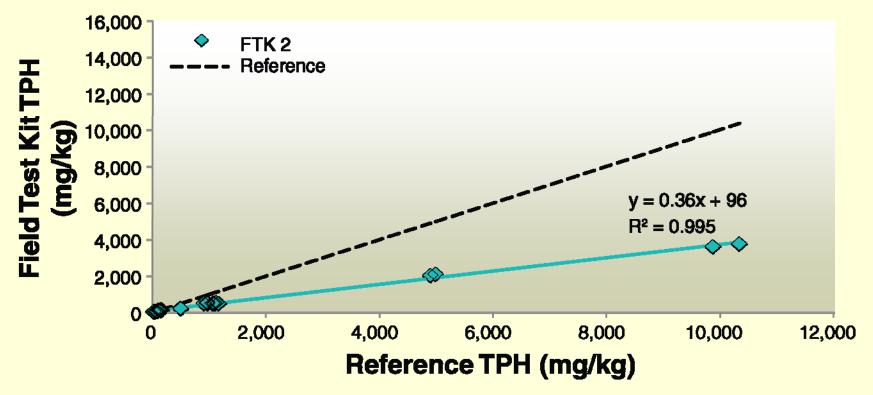
United States Environmental Protection Agency Office of Research and Development Washington, DC 20460 EPA/600/R-01/060 June 2000


SEPA Demonstration Plan

Field Measurement Technologies for Total Petroleum Hydrocarbons in Soil

Laboratory Studies with Fresh Diesel and Crude: Some FTK Results are Comparable to Reference...

E^xponent[•]



6

... While Some are Not

 Because of good correlation, "field calibration" to site-specific conditions allows the use of FTKs that are not accurate relative to the reference

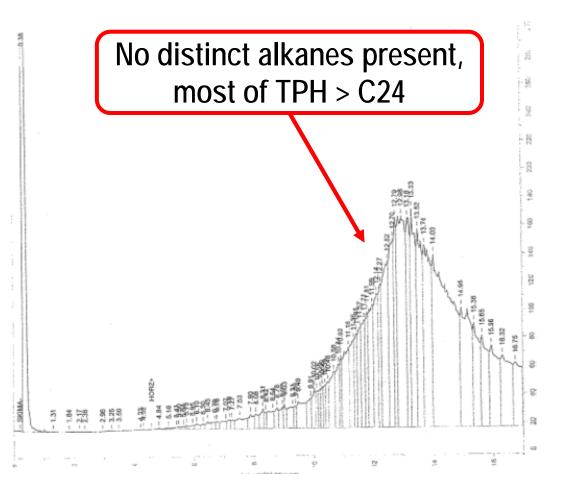
Why FTKs Are Different Than Reference?

- TPH is defined by the method
- Multiple factors influence FTK and reference results
 - Extraction efficiency

- Limitations in detection
- Inconsistent correlation between detected compounds (e.g., aromatics) and TPH
- Non-representative standards
- Interfering compounds
- Sample heterogeneity

Study Objectives

- Many petroleum sites with heavy weathered crude oil impacts
 - Are FTKs applicable to weathered crude oil-impacted soils?
- Focus on FTK performance for supporting site decisions at two typical cleanup goals of 1,000 ppm and 10,000 ppm
 - Do FTKs support comparable decisions to a reference method?


METHODS

E^xponent[•]

Field Site and Samples

- Site with weathered heavy crude oilimpacted soil in San Joaquin Valley, California
- Soil samples
 - 40 samples collected from two stockpiles and excavation walls
 - Homogenized and split for analyses

Sample Analysis

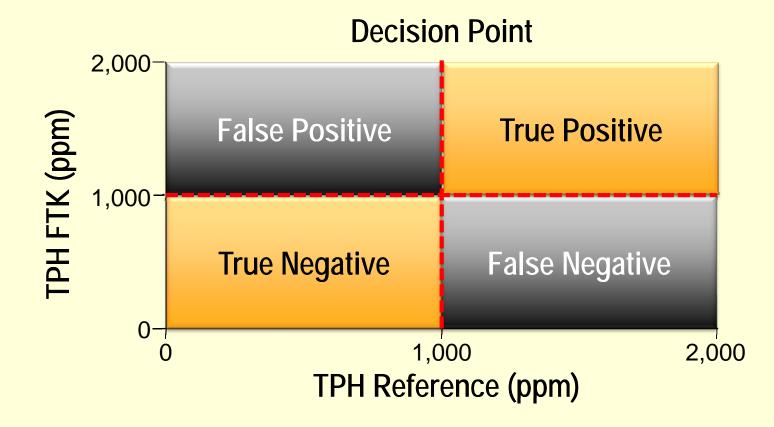
- TPH (C10–C32) with GC-FID as a reference (8015 and solvent extraction)
- Five FTKs evaluated

E^xponent[•]

Evaluated FTKs Represent a Range of Available Technologies

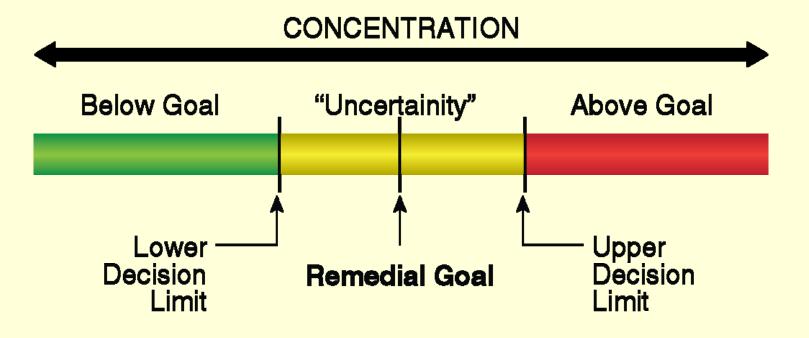
Test Kit	Technology	Solvent	Target Analytes
FTK 1	Ultraviolet fluoresence	Methanol (HPLC grade)	Aromatics in gasoline, diesel, or heavier fuels/oils
FTK 2	Ultraviolet fluoresence	Methanol	Aromatics in gasoline, diesel, or heavier fuels/oils
FTK 3	Turbidimetry	Proprietary; contains methanol	Hydrocarbons in diesel and heavier fuels/oils
FTK 4	Infrared spectrophotometry	Hexane, pentane, Vertrel	Alkanes in gasoline, diesel, and heavier oils
FTK 5	Colorimetry	Dichloromethane	Aromatics in petroleum hydrocarbons

Decision-Oriented FTK Performance Analysis

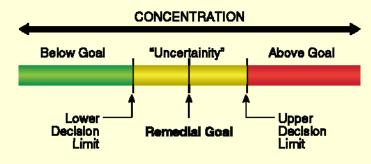

- Does the FTK result support the same decision as the result with a reference method?
 - Is the decision of "clean" or "dirty" the same based on FTK and the reference result?
 - Is the decision "uncertain"?

E^xponent

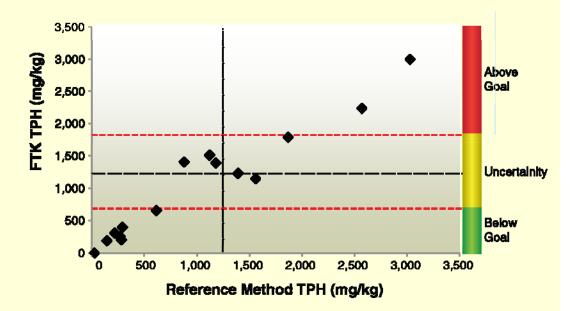
- Simulated field operations
 - 15 samples randomly selected for "field calibration"
 - Demonstration of Method Applicability (U.S. EPA 2008)
 - Remaining 25 samples were used as validation samples



Need to Control for Incorrect Decisions



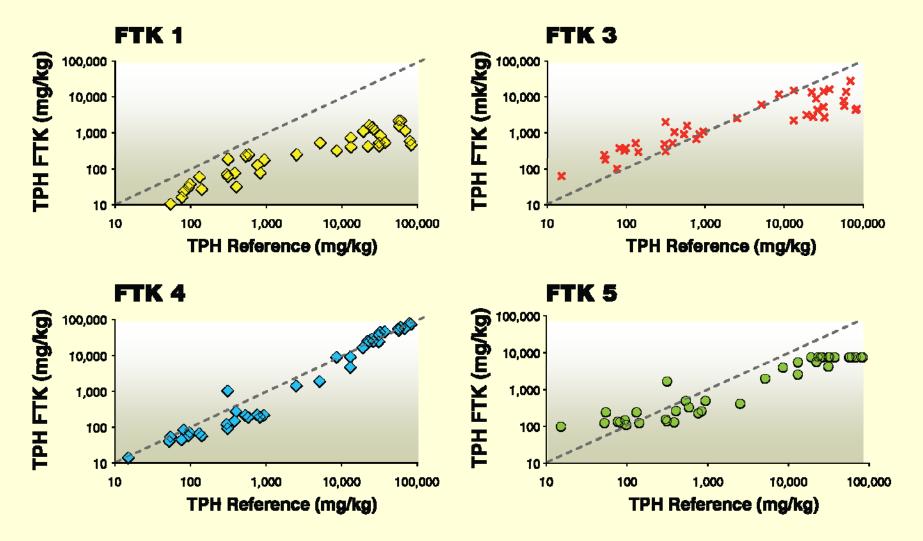
Concept of Uncertainty Interval



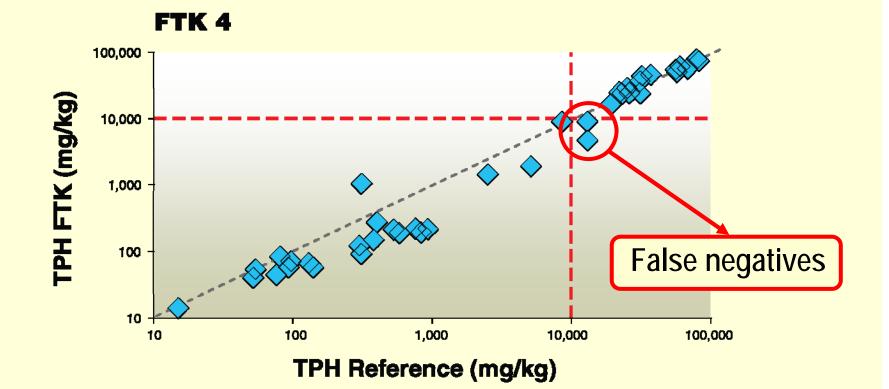
Concept of Uncertainty Interval (continued)

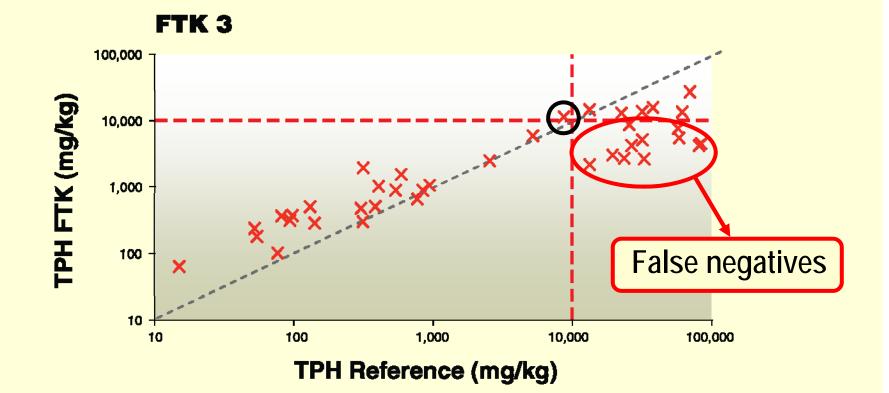
Tradeoff between:

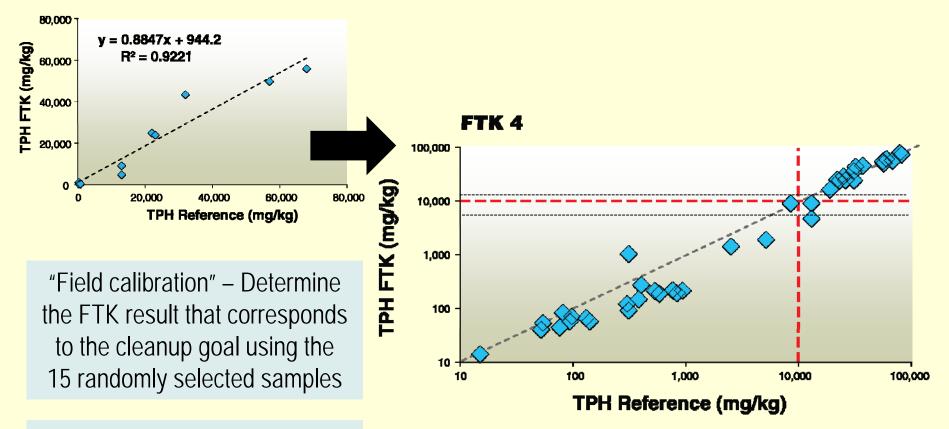
- Increased analytical costs and reduced chance of incorrect decisions
- Lower analytical costs and increased chance of incorrect decisions
- Impact depends on site-specific objectives



RESULTS




Comparison of FTK Results to Reference


Decisions with FTKs: FTK Data without "Field Calibration"

Decisions with FTKs: FTK Data without "Field Calibration" (continued)

Field Calibration and Uncertainty Interval Around the Remedial Goal

Select uncertainty interval of \pm 50% of the cleanup goal

Summary of FTK Performance—1,000 mg/kg Cleanup Goal

FTK	Raw FTK Result	Field Calibrated Result	Field Calibrated with Uncertainty Interval	
FIK	False Decisions (%)	False Decisions (%)	False Decisions (%)	Uncertain (%)
FTK 1	30	13	13	5
FTK 2	15	15	13	3
FTK 3	10	8	5	10
FTK 4	3	3	3	0
FTK 5	5	5	5	5

Summary of FTK Performance—10,000 mg/kg Cleanup Goal

FTK	Raw FTK Result	Field Calibrated Result	Field Calibrated with Uncertainty Interval	
	False Decisions (%)	False Decisions (%)	False Decisions (%)	Uncertain (%)
FTK 1	43	13	0	18
FTK 2	35	15	13	8
FTK 3	30	15	13	13
FTK 4	5	5	3	5
FTK 5	43*	5	0	13

Summary of FTK Performance—Uncertainty Interval as a Comparison Tool

E^xponent^{*}

FTK	Uncertainty Interval for 5% False Decisions (%)		
	1,000 mg/kg	10,000 mg/kg	
FTK 1	250	29	
FTK 2	375	150	
FTK 3	10	80	
FTK 4	0	5	
FTK 5	0	10	

Results based on the initial field calibration with 15 randomly selected samples.

KEY FINDINGS

26

Key Findings

- Results were highly variable; FTK 4 was an exception at this site
 - Presumably more suitable solvent (hexane) and detection method for weathered crude (IR)

Limited FTKs for weathered crude

- For most FTKs, response was lower than that of the reference
- Site-specific conditions and the selected FTK influence the performance
 - Field calibration or at least a field verification is recommended
- Use of FTKs tied to Decision Quality Objectives
 - Users need to determine what is the acceptable rate for false decisions

THANK YOU!

