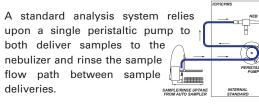
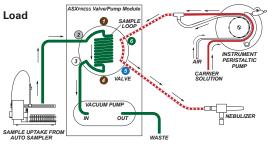


Rapid-Throughput Analysis for EPA Methods by ICP-AES and ICP-MS

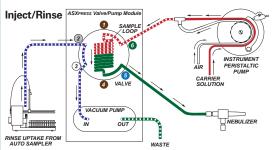
Michael Sgroi, Automation Product Line Manager, CETAC Technologies, Omaha, NE, (402) 738-5415, msgroi@cetac.com

Abstract


US Environmental Protection Agency (EPA) methods, which are relied upon by many regulatory agencies, are often lengthy and detailed. They provide specific instructions concerning sample collection, preservation, and treatment as well as required and recommended procedures for instrument calibration, tuning, and interference corrections. Compliance usually requires the methods be adhered to with no changes or modifications.


Experimental

An accelerated sampling system, consisting of a CETAC ASXPRESS® PLUS Rapid Sample Introduction System coupled to a CETAC autosampler, was setup with various ICP-AES and ICP-MS instruments from multiple manufacturers. This system is introduced into the ICP-AES or ICP-MS analysis without altering method parameters such as elements, integration times, and number of replicates. The elimination of rinse times and a reduction of overall read delay times were the only changes.


Principle of Operation

The ASXPRESS® PLUS utilizes a high speed vacuum pump in addition to the peristaltic pump to allow multiple functions to occur simultaneously which would otherwise take place separately. Analysis is divided into two stages:

The vacuum pump rapidly fills the sample loop while carrier solution is pumped by the ICP peristaltic pump to the nebulizer, maintaining plasma stability and rinsing the sample flow path.

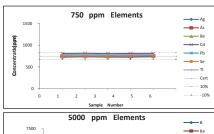
The loaded sample is transported to the nebulizer by the carrier solution while the autosampler probe moves to the rinse station and the uptake flow path is flushed with rinse solution via the vacuum pump.

ASXPRESS® PLUS Configuration Parameters

Parameter	Time (s) 6010C	Time (s) 200.7	Time (s) 200.8	
Loop Rinse	2.0	1.0	0.5	
Rinse Evacuation	2.0	1.0	1.0	
Loop Load	10.0	1.0	0.5	
Equalization	2.0	1.0	1.0	
Time to Evacuate	1.0	1.0	1.0	
Probe Rinse	5.0	1.0	1.0	
Rinse Station Refill	4.0	3.5	3.0	
Loop Volume	5.0 mL	2.5 mL	1.5 mL	

Approximate analysis times, minutes per sample before & after implementation of ASXPRESS® PLUS

EPA Method	Initial Analysis Time	Analysis Time w/ ASXPRESS® PLUS	Time Savings
6010C	6	3.5	40%
200.7	2	1	50%
200.8	7.5	3.5	55%


Carryover Data for EPA 200.8 using ASXPRESS® PLUS

				•	
Element	m/z	Average Measured Carryover (%)	Element	m/z	Average Measured Carryover (%)
Be	9	0.0148	As	75	0.0130
Na	23	-0.0080	Se	78	0.0499
Mg	24	0.0054	Мо	95	0.0151
A	27	-0.5152	Мо	98	0.0122
к	39	0.0050	Ag	107	-0.0068
Ca	44	0.0047	Cd	111	-0.1023
V	51	0.0059	Sb	121	0.0070
Cr	52	0.0044	Sb	123	0.0075
Mn	55	0.0031	Ba	137	0.0040
Fe	56	0.0056	TI	205	0.0111
Co	59	0.0051	Pb	206	0.0040
Ni	60	-0.0161	Pb	207	0.0048
Cu	63	0.0094	Pb	208	0.0047
Zn	66	-0.0046			

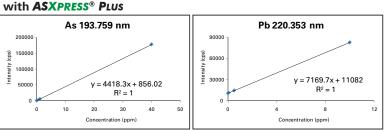
Repeatability Data for EPA 200.8

Element	m/z	Average Measured Result (ppb)	RSD (%)	Known Value (ppb)	Average Recovery (%)	Element	m/z	Average Measured Result (ppb)	RSD (%)	Known Value (ppb)	Average Recovery (%)
Be	9	23.1	1.2	25	92.2	As	75	24.8	0.7	25	99.2
Na	23	2491.8	0.8	2500	99.7	Se	78	25.7	2.2	25	102.7
Mg	24	2507.5	0.8	2500	100.3	Mo	95	22.9	1.2	25	91.6
AI	27	23.9	2.2	25	95.4	Mo	98	23.1	1.2	25	92.3
К	39	2516.2	1.4	2500	100.6	Ag	107	2.5	3.2	2.5	101.3
Ca	44	2426.2	0.9	2500	97.0	Cd	111	24.9	1.2	25	99.7
V	51	23.5	0.7	25	94.1	Sb	121	24.2	1.1	25	96.8
Cr	52	23.9	0.9	25	95.7	Sb	123	24.3	1.1	25	97.1
Mn	55	23.4	0.7	25	93.5	Ba	137	24.5	1.1	25	98.2
Fe	56	2491.0	0.6	2500	99.6	TI	205	25.1	1.1	25	100.2
Co	59	24.8	0.9	25	99.2	Pb	206	24.5	1.1	25	98.1
Ni	60	25.1	1.0	25	100.6	Pb	207	24.5	1.1	25	97.9
Cu	63	24.5	1.0	25	98.1	Pb	208	24.6	1.0	25	98.5
Zn	66	25.2	1.1	25	100.8						

Stability for EPA 6010C elements with **ASXPRESS®** PLUS

1 2 3 4 5 6 Sample Number

25000 ppm Elements


2

3 4 5

30000

20000

10000

Co

--------Cr

----- Li

_____M

Ni

- Sb

_____ Si

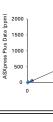
—v

Zr

- Cer

-Ca

Fe


<u> к</u>

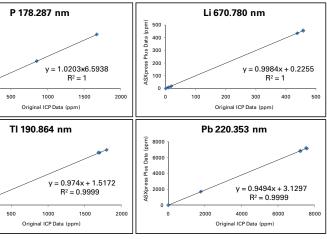
Na

----- Cer

- 10%

- 10%

Results


References

EPA Method 200.7, "Determination of Metals and Trace Metals in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry," Revision 4.4, 1994, Environmental Monitorina Systems Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268.

FTAC Technologies maha. NE 68144 F 402 733 2829

Calibration Plots Showing Linearity for EPA 200.7 elements

Reproducability for EPA 6010C elements with **ASXPRESS® PLUS**

The ASXPRESS® PLUS system achieved a time savings of 40-55% while preserving the original data quality.

EPA Method 200.8, "Methods for the Determination of Metals in Environmental Samples -Supplement 1", EPA-600/R-94-111, May 1994, Available at NTIS, PB 94-184942.

USEPA SW-846 Method 6010C. Revision 3. November 2000.