

Analysis of TO-15/TO-17 air toxics in urban air using TD–GC/TOF MS and automated compound identification software

NEMC, Washington D.C. August 6th 2012

Nicola Watson Environmental Specialist Markes International nwatson@markes.com

Thermal desorption – One versatile technique for all vapour-phase air monitoring applications

Application: 'Air toxics' in canisters – US EPA Method TO-15

43 Methyl n-butyl ketone

22 Cis-1,2-Dichloroethylene

2 Did 3 1,2: 4 Met 5 1,2: 6 1,3: 7 Viny 8 Met 9 Chi, 10 Trici 11 Ethi 12 1,2; 13 1,1, 14 Ace 15 Car 16 Iso, 17 Met 18 Tert 19 <i>n</i> -H 20 1,1: 21 Viny	horodifluoromethane -Dichlorotetrafluoroethane hyl chloride -Duchloroethane -Butadiene yl chloride hyl bromide (bromomethane) oroethane hlorotrifluoroethane (Freon [®] 113) anol ,-Dichloroethylene ,2-Trichlorotrifluoroethane tone bon disulfide propyl alcohol hylene chloride t-butyl methyl ether lexane -Dichloroethane yl acetate	23 M 24 E 25 T 26 C 27 1 28 C 29 C 30 E 31 <i>n</i> 32 T 33 1 35 E 36 T 37 N 38 T 37 N 38 T 39 C 40 T 41 1 42 T	lethyl eth thyl aceta etrahydroc hloroform ,1,1-Trich yrclohexa arbon tet enzene -Heptane richloroet ,2-Dichlo ,2-Dichlo ,2-Dichlo rans-1,3- lethyl isol oluene Tis-1,3-Dir rans-1,2- ta-shloro etrachloro etrachloro etrachloro etrachloro
		6000	00-
		5500	00-
1 L of	a 1 ppb air	5000	00-
		4500	00-
analys	ed splitless	4000	100-
	yogen-nee	3500	00-
using	TD-GC/MS	3000	00-
	scan		
		2500	00-
		2000	

1 Propylene

Application: 'Air toxics' using sorbent tubes – US EPA Method TO-17

Can canisters do everything?

- Great for C_2 to C_{12} compounds
- Suitable for rapid transfer (not storage)
 of ultra-volatile reactive compounds such
 as H₂S
- Ideal for simple grab-sampling
- × NOT suitable for compounds with volatility less than $C_{10/12}$
- NOT suitable for high-concentration samples
- X Time-weighted average sampling is NOT easy with a canister

Application: Soil gas

Profiles of soil gas contaminated with kerosene obtained using:

- (a) Canister sampling and TO-15 analysis (blue)
- (b) Sorbent tube sampling with TO-17 analysis (red)

Courtesy of H. Hayes, Eurofins Air Toxics, Folsom

Active (pumped) sampling

- TO17 specifies "The monitoring procedure involves pulling a volume of air through a sorbent packing to collect VOCs"
- Flow rate typically 20 100 ml/min
- Volume taken is typically in the range 5 ml – 100 L, depending on expected concentration (typically two samples 1 L and 4 L)
- Much faster technique compared to diffusive sampling
- Important do not exceed breakthrough volume for a compound on a given sorbent

Tube-based thermal desorption – An overview of the process

Tube-based thermal desorption

Compounds of interest are adsorbed on the sorbent surface

Tube-based thermal desorption

Breakthrough

Air monitoring – Pumped

Sorbent selection for both tubes and focusing trap are very important

Semi-volatile compounds – Weak sorbent Helps prevent retention of unwanted compounds

Common sorbents

Sorbent name	Volatility range					
Quartz wool / silica beads	$C_{30} - C_{40}$					
Tenax TA	$C_7 - C_{30}$					
Carbograph 2TD	$C_8 - C_{20}$					
Carbograph 1TD	$C_{5/6} - C_{14}$					
Carbograph 5TD	$C_{3/4} - C_{6/7}$					
SulfiCarb	$C_{3} - C_{8}$					
Carboxen 1003	$C_2 - C_5$					
Carbosieve SIII	$C_2 - C_5$					

Application examples – High/Low concentration

Sample security using sample re-collection

Stage 1: Primary (tube) desorption with optional (inlet) split

Sample security using sample re-collection

Stage 2: Secondary (trap) desorption with optional (outlet) split

Re-analysis of low-concentration sample

The 4 ppb standard was re-collected for re-analysis using SIM detection conditions

BenchTOF-dx: Detector enhancements for air monitoring

What does BenchTOF-dx offer?

- Spectral accuracy cannot be compromised
- Sensitivity is KING
- Speed can be leveraged for deconvolution
- Selectivity enhanced mass resolution should mainly be used to limit the matrix in VOC work (high res has limited advantages)
- **Stability** is key to productivity

Quadrupole comparison

500 mL sample of 4 ppb ozone precursor standard

Quadrupole comparison

200 mL sample of ambient rural air

Quadrupole comparison

200 mL sample of ambient rural air

10 mL of ambient semi-rural air

Total ion chromatogram showing splitless analysis of only <u>10 mL</u> of semi-rural air using TD–GC–TOF MS.

Inset: Extracted-ion chromatogram for a characteristic fragment ion of Freon[®] 113 (present in the atmosphere at *ca.* 80 ppt).

How can I use a large sensitivity boost in air monitoring applications?

- Trace-level work for unknowns and targets combined at lower MDLs
- Smaller sample sizes but same MDLs
- Higher splits, cleaner system but same MDLs
- However you want to!

An investment in BenchTOF-dx provides a sensitivity boost!

Provides productivity too!

From 40 minutes to 7 minutes (4 runs in the time to do 1!)

...without compromising sensitivity

BenchTOF-dx – 1 mL injection of 1 ppm standard (65 component) with 292:1 split Equivalent to ~3 ppt (0.003 ppb) on-column

full scan mode

...whilst maintaining linearity

Challenges associated with identifying target compounds in complex GCMS profiles

The problem...

 Identifying the presence of known toxic chemicals in complex GCMS TIC profiles is very challenging

The way forward....

- Technical capacity to interpret spectra is declining or absent, majority of
- Developments of detaoning metrical the branching software branching software
- Implementationatorpiscon/price to by on tone transformed by on the transformed by one transform
- The application of multivariate data analysis algorithms provides an orthoganol dimension or analysisConventional library search techniques can result in mis identification with low quality matches and limited confidence in the result

Data Analysis using TargetView software

Chromatogram of semi-rural air sample, before and after DBC processing. The inset shows TargetView report of those TO-15/17 compounds positively identified in the sample

Dynamic Background Compensation (DBC)

 Dynamic Background Compensation (DBC) is a sophisticated software algorithm designed to distinguish between chromatographic peaks and slower GC-background / baseline anomalies.

The main advantages of DBC include:

Improved spectral purity

- Enhanced identification of trace target analytes and unknowns.

- Selective elimination of interfering ions resulting in
 - Flat chromatographic baseline
 - Enhanced integration
- Increased sensitivity

- Reduced noise enhances S/N

DBC in action –

Baseline noise suppression

Post DBRa-norse biolegorptimised, mpieriszate backgy Su (TB G) istera

Deconvolution of peaks

Deconvolved spectra for both known and unknown compounds can be cross searched against NIST databases

The chemometric visualisation of data (PCA)

PCA identification of benzene

- Deconvolution identifies a number of target and unknown compounds in the sample
- The deconvolved spectrum for all compounds (yellow circles) is projected onto a 2 dimensional plane.
- The red dot equates to the target compound spectrum
- Proximity of a yellow circle to the target indicates a positive hit

The close proximity of 1 spectrum indicates a single positive match

Simplicity of use -

Generating a TargetView report is just a 2 step process

1) Select a data file 2) Import the data and print a report

bitrary: Pesticides MSP incromatogram: Pesticides_Orangeoil_40_dbc CAS no. Retention time inno inno inno inno inno inno inno inn	teport File									
Draws Pesticides MSP hromatogram: Pesticides_Orangeoil_40_dbc Retention time (mins) Expected retention time (mins) Retention index (seconds) Matching library Peak sum coefficient Peak sum (rtc) Extracted ion >Hydroxybiphenyl 90-43-7 3.418 - - 0.923 67943205 - - >-Hydroxybiphenyl 90-43-7 3.418 - - 0.888 75340104 - - >-Chlorpyriphos - methyl 5598-11-0 6.168 - - 0.834 73567104 - - Parkinpiphos methyl 298-00-0 6.284 - - 0.834 6548245 - - Parkinpiphos methyl 2923-93-7 6.753 - - 0.884 6548245 - - Chlorpyrifos 2921-88-2 7.067 - - 0.886 66934715 - - Chlorobenzilate 510-15-6 9.681 - - 0.885 4771600 - - Ohrobenzilate									Sort by	
Farget compound CAS no. Retention time (mins) Expected retention time (mins) Retention index (seconds) Retention index library Matching coefficient Peak sum (TIC) Peak sum (extr. ion) Extracted ion 0-Hydroxybiphenyl 90-43-7 3.418 - - 0.923 67943205 - - Diazinone 333-41-5 5.400 - - 0.888 75340104 - - Chiorypriphos - methyl 5598-13-0 6.168 - - 0.834 73567104 - - Atetyl parathion 298-00-0 6.284 - - 0.834 73567104 - - Atetyl parathion 298-293-7 6.753 - - 0.834 65482245 - - Ohorpyrifos 2921-88-2 7.067 - - 0.888 66934715 - - Chiorobenzilate 510-15-6 9.681 - - - 0.895 4771600 - - Athiorobenzilate <td< th=""><th>brary: Pesticides.MSP hromatogram: Pesticides_Orangeoil_40_dbc</th><th></th><th colspan="3"></th><th colspan="2">Show hits only</th><th>Retention</th><th>time</th></td<>	brary: Pesticides.MSP hromatogram: Pesticides_Orangeoil_40_dbc					Show hits only		Retention	time	
Hydroxybiphenyl 90-43-7 3.418 - - - 0.923 67943205 - - Diazinone 333.41-5 5.400 - - 0.888 75340104 - - Chlorpyriphos - methyl 5598-13-0 6.168 - - 0.834 73567104 - - Aethyl parathion 296-00-0 6.284 - - - 0.804 73567104 - - Ohorpyriphos - methyl 2923-23-7 6.753 - - - 0.807 64753800 - - Chlorpyrifos 2921-88-2 7.067 - - 0.884 65632475 - - Chlorpyrifos 2921-88-2 7.067 - - 0.884 65632475 - - Chlorobenzilate 510-15-6 9.681 - - 0.884 65632475 - - Chlorobenzilate 510-15-6 9.681 - - - 0.895	arget compound	CAS no.	Retention time (mins)	Expected retention time (mins)	delta RT (seconds)	Retention index library	Matching coefficient	Peak sum (TIC)	Peak sum (extr.ion)	Extracted i
Diazinone 333.41-5 5.400 - - 0.888 75340104 - - Chlorpyriphos - methyl 5598-13-0 6.168 - - 0.834 73567104 - - dethyl parathion 298-00-0 6.284 - - 0.904 52940385 - - dethyl parathion 2923-93-7 6.753 - - 0.868 65934715 - - Chlorpyrifos 2921-88-2 7.067 - - 0.884 65482245 - - Aethidathion 950-37-8 8.124 - - 0.886 66934715 - - Aethidathion 950-37-8 8.124 - - 0.886 66934715 - - Chlorobenzilate 510-15-6 9.681 - - 0.895 4771600 - - roopargite 2312-35-8 9.766 - - 0.786 61335930 - - aromopropylate 1818-80-1 10.092 - - - 0.893 68	-Hydroxybiphenyl	90-43-7	3.418	-	-	-	0.923	67943205	-	-
Shorpyriphos - methyl 5598-13-0 6.168 - - 0.834 73567104 - - tethyl parathion 298-00-0 6.284 - - 0.904 52940385 - - trimiphos methyl 2923-93-7 6.753 - - 0.887 64755360 - - Shorpyrifos 2921-88-2 7.067 - - 0.884 65482245 - - tethidathion 950-37-8 8.124 - - 0.888 66934715 - - thion 950-37-8 8.124 - - 0.888 66934715 - - thion 950-37-8 9.180 - - 0.895 4771600 - - thiorobenzilate 510-15-6 9.681 - - 0.895 4771600 - - tropargite 2312-35-8 9.766 - - 0.786 61335930 - - tromopropylate 18161-80-1 10.092 - - 0.893 68813394 -	Diazinone	333-41-5	5.400	-	-	-	0.888	75340104	-	-
tethyl parathion 298-00-0 6.284 - - 0.904 52940385 - - triniphos methyl 29232-93-7 6.753 - - 0.857 64755360 - - chlorpyrifos 2921-88-2 7.067 - - 0.884 65482245 - - tethidathion 950-37-8 8.124 - - 0.886 66934715 - - thion 563-12-2 9.180 - - 0.895 4771600 - - chlorobenzilate 510.15-6 9.681 - - - 0.895 4771600 - - ropargite 2312-35-8 9.766 - - - 0.796 61335930 - - tromoprophylate 1818-80-1 10.092 - - - 0.893 68813344 - - tenzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813344 - - <td>hlorpyriphos - methyl</td> <td>5598-13-0</td> <td>6.168</td> <td>-</td> <td>-</td> <td>-</td> <td>0.834</td> <td>73567104</td> <td>-</td> <td>-</td>	hlorpyriphos - methyl	5598-13-0	6.168	-	-	-	0.834	73567104	-	-
irriniphos methyl 29232-93-7 6.753 - - 0.857 6475360 - - Chlorpyrifos 2921-86-2 7.067 - - 0.884 65482245 - - Atthidathion 950-37-8 8.124 - - 0.888 66934715 - - Atthidathion 563-12-2 9.180 - - 0.891 70367200 - - Chlorobenzilate 510-15-6 9.681 - - - 0.895 4771600 - - Yropargite 2312-35-8 9.766 - - - 0.795 46128300 - - Bromopropylate 18181-80-1 10.092 - - - 0.893 68813394 - - Brenzene, 1, 2, 4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - - Brenzene, 1, 2, 4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - - <td< td=""><td>Nethyl parathion</td><td>298-00-0</td><td>6.284</td><td>-</td><td>-</td><td>-</td><td>0.904</td><td>52940385</td><td>-</td><td>-</td></td<>	Nethyl parathion	298-00-0	6.284	-	-	-	0.904	52940385	-	-
Chlorpyrifos 2921-88-2 7.067 - - 0.884 65482245 - - Methidathion 950-37-8 8.124 - - 0.888 66934715 - - Atthidathion 563-12-2 9.180 - - 0.891 70387200 - - Chlorobenzilate 510-15-6 9.681 - - 0.895 4771600 - - Propargite 2312-35-8 9.766 - - - 0.786 61335930 - - Bromopropylate 1818-80-1 10.092 - - - 0.893 68813394 - - Senzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - - Senzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 Incol Incol <td>Pirimiphos methyl</td> <td>29232-93-7</td> <td>6.753</td> <td>-</td> <td>-</td> <td>-</td> <td>0.857</td> <td>64755360</td> <td>-</td> <td>-</td>	Pirimiphos methyl	29232-93-7	6.753	-	-	-	0.857	64755360	-	-
Methidathion 950-37-8 8.124 - - 0.888 66934715 - - Ethion 563-12-2 9.180 - - 0.891 70387200 - - Chlorobenzilate 510-15-6 9.681 - - 0.895 4771600 - - Propargite 2312-35-8 9.766 - - - 0.786 61335930 - - Bromopropylate 1818-80-1 10.092 - - - 0.893 68813394 - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - - -	Chlorpyrifos	2921-88-2	7.067	-	-	-	0.884	65482245	-	-
thion 563-12-2 9.180 - - 0.891 70387200 - - Chlorobenzilate 510-15-6 9.681 - - 0.895 4771600 - - Propargite 2312-35-8 9.766 - - - 0.786 6133530 - - Bromopropylate 1818-80-1 10.092 - - - 0.893 68813394 - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813394 - -	Methidathion	950-37-8	8.124	-	-	-	0.888	66934715	-	-
Shifting 510-15-6 9.681 - - 0.895 4771600 - - tropargite 2312-35-8 9.766 - - 0.786 61335930 - - tropargite 1818-80-1 10.092 - - - 0.795 46128300 - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68613394 - -	ithion	563-12-2	9.180	-	-	-	0.891	70387200	-	-
Propargite 2312-35-8 9.766 - - 0.786 61335930 - - gromopropylate 18181-80-1 10.092 - - - 0.795 46128300 - - genzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 6881334 - - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - - 0.893 68813344 - </td <td>Chlorobenzilate</td> <td>510-15-6</td> <td>9.681</td> <td>-</td> <td>-</td> <td>-</td> <td>0.895</td> <td>4771600</td> <td>-</td> <td>-</td>	Chlorobenzilate	510-15-6	9.681	-	-	-	0.895	4771600	-	-
Bit Mit Bit Bit Bit Bit Bit Bit Bit Bit Bit B	Propargite	2312-35-8	9.766	-	-	-	0.786	61335930	-	-
Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - 0.893 68813394 - - Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]- 116-29-0 10.329 - - 0.893 68813394 - - -	Bromopropylate	18181-80-1	10.092	-	-	-	0.795	46128300	-	-
	Benzene, 1,2,4-trichloro-5-[(4-chlorophenyl)sulfonyl]-	116-29-0	10.329	-	-	-	0.893	68813394	-	-
PRINT EXIT			1						RINT	EXIT
I ardet library	Select	Cancel	Minir most	num signal of abundant ion nts] Dec	onvolution	Pesticides.M	SP	rget library		Chontrace
Select Cancel Minimum signal of most abundant ion Counts Deconvolution Automatically process target library Automatically process target library	÷ 0 ÷ 2054	550		0		Capacit				

Summary

- A combination of canisters and sorbent tubes provides a comprehensive evaluation of an application, e.g. ambient air monitoring
- BenchTOF-dx provides a sensitivity and productivity boost that can be utilised several ways while providing method tunes and NIST-compliant spectra
- Challenges associated with identifying target compounds in complex GCMS profiles can now be overcome by employing simple data analysis packages such as TargetView.

Any Questions?

Nicola Watson Environmental Specialist Markes International <u>nwatson@markes.com</u>

