Oil Spill Source Identification with Advanced and Tiered Analytical Tools

Deyuan(Kitty) Kong, Mike Moir

Chevron Energy Technology Company

Robert Nelson, Chris Reddy

Woods Hole Oceanography Institution

August 6th, 2012

Goal of Analysis – Data Quality Objective

Increasing cost, time, interpretive skill, fuzziness, and ...

Source Identification

You would like :

Clarification ownership

You usually get:

- Most Likely
- Multiple contributions
- Relative description hypothesis
- Inconclusive or paradoxical results

You need to use:

Multiple lines of evidence

Petroleum Product – Specifications

- Specifications are designed to meet customer's performance requirements
- Customer specifications include:
 - Engine performance
 - Environmental performance
- Performance is related to the complex mixture of hydrocarbons

Gasoline Specifications- ASTM D4814

- Prior to Federal RFG and CARB, gasoline was typically blended to meet octane, RVP and distillation specifications
 - Reformulated (RFG) gasoline reduced RVP and added oxygenate, benzene and aromatics specifications for targeted air basins
 - CARB gasoline went further by added specifications for sulfur, olefins, and more stringent distillation requirements for California
- ■Emerging requirements EPA Tier II and CARB Phase 3 (Pharmaceutical Grade Gasoline!)
 - Further reduction in sulfur and benzene specifications
 - Ethanol addition driven by renewable legislation

Chemistry: Desire streams with iso-paraffins, naphthenes, toluene (non-benzene aromatic), and olefin molecules within limits, manage challenge of ethanol addition, minimize low octane normal paraffins

Source Identification of Gasoline-Gasoline Blending Components

- Distillation light straight run
- Cracking
 - Thermal Coker light naphtha
 - Catalytic FCC light naphtha
 - Hydro Isomaxate
- Alkylation Alkylate
- * Reforming reformate

Approximate Carbon and Boiling Ranges of Petroleum Products

Diesel Fuel Oils by ASTM D975

Diesel Fuel Class	Specification
No. 1-D S15	Special Purpose, Light middle Distillate UL Diesel S< 15ppm
No. 1-D S500	Special Purpose, Light middle Distillate UL Diesel S< 500 ppm
No. 1-D S5000	Special Purpose, Light middle Distillate UL Diesel S< 5000 ppm
No. 2-D S15	General Purpose, Light middle Distillate UL Diesel S< 15ppm
No. 2-D S500	General Purpose, Light middle Distillate UL Diesel S< 500 ppm
No. 2-D S5000	General Purpose, Light middle Distillate UL Diesel S< 5000 ppm
No. 4-D	A heavy distillate/Blend distillate/Residual Oil

Chevron

What are in Our Tool Boxes for source identification?

- Refining Technology/Composition Changes
- Star-gram- Pattern Recognition based on composition analysis
- PAH distribution-double ratio plot
- Biomarker Analysis for Diesel/Crude Oil
- Bulk Stable Isotope Ratio Mass Spectrometry and CSIA-MS (Compound Specific Isotope Analysis Mass Spectrometry)
- Multidimensional GCxGC
- Multivariate statistical analysis

Tiered Approach to Fingerprint oils in Environmental Forensic

Comparison of the Fingerprinting Methods

- Both ASTM D3328-Standard Test Methods for comparison of waterborne Petroleum Oils by GC and D5739-Oil spill identification by GC and positive ion electron impact low resolution Mass spectrometry was introduced in 1995 are not suitable for Gasolines.
- Both ASTM D3288 and D5739 are Semi-quantification though D5739 will provide the normalized histogram for the distribution of class of components.
- D6729 Gasoline composition analysis with High Resolution GC only suitable for gasoline. EPA 8260 also could be used as the PIANO analysis.
- 8015m and 8270C modification came from ASTM 3328 in 1974.
 Polyaromatic hydrocarbon and Biomarker could be added into 8270 test matrix with proper standards.

Qualitative Assessment by GC-FID-depends on DQO (Data Quality Objective)

Modified 8015 vs. Detailed Hydrocarbon Analysis D6729 (DHA method for gasoline composition analysis)

Biomarkers in Petroleum Hydrocarbons

Biomarkers provide additional evidence when dealing with biodegraded products-m/z 191 tricyclic terpanes

Diagnostic Ratio originated from different classes of component to correlate the source

GC×GC

Multidimensional Biomarker Separation

Difference Chromatogram

Interpretation of fingerprinting data is not always easy

Broad range of fuel specifications

- no product is sold as molecules, specifications are based on <u>performance</u> -octane number, V/L (vapor/liquid) and <u>regulations</u> -RVP (Reid vapor pressure), Benzene
- Limits on total olefins, aromatics, Lead, Sulfur, and MTBE are recent regulation

Weathering

- Evaporation
- Biodegradation
- Oxidation
- sorption
- Mixtures of products and sources

Acknowledgement

- Al Verstuyft- Chevron Retiree
- Liz Harvey-Chevron Retiree
- Chevron EMC

