Distinguishing Chlorinated Solvent Releases by Stable Isotope Analysis

Alan Jeffrey, Ph.D. National Environmental Monitoring Conference August, 2012

Chlorinated Solvents

PCE – dry cleaning solvent TCE – vapor degreasing solvent TCA – degreasing solvent **Dissolve in** groundwater; migrate easily Vapors intrude into overlying buildings

Chlorinated Solvent

Is PCE or TCE in a single plume from one source or from multiple sources?
 Is PCE or TCE in multiple plumes from the same source or from different sources?

Is TCE in a PCE plume from degradation of the PCE or from a separate TCE source?

Chlorinated Solvent Characterization

PCE, TCE etc are single compounds –

petroleum products are a mixture of HCs

- Different sources are chemically identical
- May be isotopic differences

¹³C/¹²C, ³⁷Cl/³⁵Cl, D/H ratios differ depending

on feedstock and manufacturing process

Compound Specific Isotope Analysis

Volatiles isolated from groundwater and soil on a Solid Phase Micro Extraction (SPME) fibre

Volatiles desorbed in inlet of GC/Isotope Ratio Mass Spectrometer

Isotope ratios measured as δ^{13} C, δ^{37} Cl, and δ D in parts per mil (°/_{oo}) referenced to standards (0 °/_{oo})

GC/IRMS Instrument Schematic

Case 1: Undegraded PCE in Multiple Aquifers

- Upper and lower aquifers have PCE contamination
 - Traces of TCE & cDCE little apparent degradation
 - Multiple sources in upper aquifer?
- Different sources in upper and lower aquifer?

PCE Concentrations in Upper Aquifer

PCE Isotope Ratios in Upper Aquifer

PCE in Multiple Aquifers

PCE in Multiple Aquifers

Conclusions

- Some differences in carbon and chlorine
 - isotopes in upper aquifer
- Possibly different sources
- Significant differences between upper
 - and lower aquifers in the same well
- Definitely different sources

PCE and TCE Degradation

PCE Degradation

¹²C – X Bonds are weaker than ¹³C – X Bonds

In a chemical reaction, ¹²C – X Bonds break faster than ¹³C – X Bonds

If reaction proceeds to completion – all PCE goes to TCE - isotope ratio in product is the same as in starting material

If reaction is partially completed, ¹²C is concentrated in product, and ¹³C is concentrated in starting material

Product (TCE) becomes lighter (more negative); Starting material (PCE) becomes heavier (less negative)

Isotope Ratio Reconstruction

If isotope ratios and concentrations of daughter products are known, isotope ratio of initial PCE can be calculated

Initial PCE $\delta^{13}C =$

 $\frac{\text{PCE moles x } \delta^{13}\text{C} + \text{TCE moles x } \delta^{13}\text{C} + \text{DCE moles x } \delta^{13}\text{C}}{\text{PCE + TCE + DCE moles}}$

Assuming no loss of PCE, TCE, DCE or other daughter products from the system

Case 2: Degraded PCE and TCE in Multiple Plumes

- Separate plumes with PCE, TCE, and cDCE – marked differences in degradation within plumes
 - No vinyl chloride little apparent loss of chlorinated solvents in the system
- Multiple TCE sources in the plumes?
 TCE in PCE plume from migration from TCE plumes?

Carbon isotope ratios in Main Plume LSB-1

Carbon isotope ratios in Main Plume LSB-1

Carbon isotope ratio in Main Plume MW-3

Carbon isotope ratio in Main Plume MW-3

Carbon isotope ratios in Main Plume South MW-8

Carbon isotope ratios in Main Plume South MW-8

Carbon isotope ratios in Main Plume South MW-18A

Carbon isotope ratios in Main Plume South MW-18A

Carbon isotope ratios in East Plume MW-15

Carbon isotope ratios in East Plume MW-15

Carbon isotope ratios in East Plume LSB-4

Carbon isotope ratios in East Plume LSB-4

Carbon isotope ratios in Main Plume and East Plume

Carbon isotope ratios in West Plume GF-H08

Carbon isotope ratios in West Plume GF-H08

Carbon isotope ratios in West Plume GF-H08 and GF-H18

Carbon isotope ratios in West Plume GF-H08 and GF-H18

Conclusions

- Isotope ratio reconstruction shows at
 - least three chlorinated solvent releases:
- TCE in Main Plume
- Different TCE in East Plume
- PCE in West Plume with no contribution from TCE plumes