

A PBMS Response to Regulatory ICR Measurement Quality Objectives

Yves Tondeur¹, Ph.D. B. Vining¹, Ph.D., H. Steele¹, Ph.D., J. Hart¹, and R.R. Segall²

1) SGS Analytical Perspectives 2) USEPA-OAQPS

2012 National Environmental Monitoring Conference

Washington, D.C. August 6-10, 2012

SGS

Outline

- Information Collection Request (ICR)
- Target Analytes & Available Methods
- EPA's Measurement Objectives
- Specific Configurations
- Illustration
 - ✓ Optimization of Sampling & Analytical Costs
 - ✓ Enhanced Data Reliability
 - ➤ Dioxins/Furans & 12 PCBs
 - ➤ PAHs

^{*}Though EPA has contributed technical input to this discussion, it does not imply EPA endorsement.

Information Collection Request

- 2007 Legal decision precipitated EPA issuance of many ICRs to collect additional air emissions data
- Support development of Maximum Achievable Control Technology (MACT) standards
- Hazardous Air Pollutants (HAPs)
- Each Targeted Source Category

Information Collection Request

- ICR = Tool to collect emissions-related data using authority under Section 114
 CAA
- Includes reporting, emission testing, survey, & other information collection requirements
- 2010
 - ✓ OAQPS initiated a number of source category specific ICRs
 - ✓ Collect information related to facility emissions and controls for HAP
 - ✓ To develop standards and/or evaluate the residual risk for these source categories

Target Analytes & Available Methods

- Matrix: Flue Gases from Stacks
- 136 Dioxins/Furans Congeners & TEQs (Toxic Equivalents)

EPA Methods 8290/23/1613

12 coplanar PCBs EPA Method 1668

• 19 PAHs CARB Method 429 or

EPA Method 8270

Semivolatile Organics EPA Method 8270

- 1. Detection Limits
- 2. Costs
- 3. Response Time
 - Planning
 - Sampling
 - Analysis
 - Reporting

Lowest Achievable

Best Quality with

Reasonable Costs

Fast (ICR deadlines)

Low Detection Limits

TEQ-Based Detection Limits for Dioxins/Furans

Year	Ν	EDL _{TEQ} pg/train	LOD _{TEQ} pg/train
2008	1,319	8.47	19
2009	930	8.33	20.7
2010	1,882	6.59	16.2

WHO-2005 TEQ-Based Detection Limits for PCBs

Year	N	EDL _{TEQ} pg/train	LOD _{TEQ} pg/train
2008	63	0.579	1.29

EPA 1993 RPQ-Based Detection Limits for PAHs

Year	N	EDL _{RPQ} ng/train	LOD _{RPQ} ng/train
2008	140	1.42	4.19

Measurement Objectives Costs

standard approach

• Dioxins/Furans, PCBs, PAHs, Semivolatiles = 4 Sets of Target Compounds

•	Field Test: 3 Runs + Blank = 16 Field Samples	\$16,000
•	I ICIU ICSI. S IVUIS T DIAIIN — IVI ICIU SAITIDICS	Φ 10.000

Analytical Runs

\checkmark	4 for Dioxins/Furans + 3 QA/QC = 7 runs	\$7,000	
\checkmark	4 for PCBs + 3 QA/QC = 7 runs	\$6,300	
✓	4 for PAHs + $3 \text{ QA/QC} = 7 \text{ runs}$	\$5,600	
✓	12 for Semivolatiles + 9 QA/QC = 21 runs	\$8,400	
Total		\$43.300	

11

Measurement Objectives Costs

PBMS

Total		\$25,700	(-41%)	
	•	12 for Semivolatiles + 9 QA/QC = 21 runs	\$8,400	
	•	4 for PAHs + 3 QA/QC = 7 runs	\$4,900	(-\$0.7K)
	•	4 for Dioxins/Furans & PCBs + 3 QA/QC = 7 runs	\$8,400	(-\$4.9K)
•	Analytical Runs			
•	Fi	eld Test: 3 Runs + Blank = 4 Field Samples	\$4,000	(-\$12K)
•	D	ioxins/Furans, PCBs, PAHs, Semivolatiles = 4 Sets	of Target Co	mpounds

Methods 0010 & 23

Sampling Train

Dioxins/Furans

17 Congeners with Toxic Equivalency Factors (TEF) + Totals (homologue groups)

EPA Method 23

PCBs

12 Congeners with Toxic Equivalency Factors (TEF)

EPA Methods 0010 and 1668

Semivolatiles/PAHs

EPA Method 8270 "List"

CARB Method 429 – 19 PAHs (SIM – LRMS or HRMS)

SIM = Selected Ion Monitoring LRMS = Low-Resolution MS HRMS = High-Resolution MS

One Possible Alternate Approach – Two Sampling Trains

One Sampling Train

Dioxins/Furans/PCBs

Methods 23/1668 ← FH/BH/Imp

One Sampling Train (split extract)

One Sampling Train (split extract)

Splitting extracts between LRMS & HRMS results in many conflicts (e.g., standards); thus, this configuration is not recommended.

Illustration

PBMS response

Optimization of Sampling & Analytical Costs

Two Sampling Trains

Dioxins/Furans/PCBs/Semivolatiles/PAHs

Enhanced Data Reliability

Spectrometry

Court D. Sandau, PhD SETAC 2011 - www.chemistry-matters.com

Method **8270** *vs.*Method **429** with Isotope-Dilution Selected Ion Monitoring High-Resolution Mass Spectrometry

- Samples from 5 Locations
- Homogenized & Split
- Sent 5 for Routine PAH by M8270 to Lab X
- Sent 5 for ID-HRMS M429 / ID-SIM-HRMS to Lab Y
- SRM Accuracy
- Blind Duplicate Precision (Field Duplicate includes sampling error)

Court D. Sandau, PhD SETAC 2011 - www.chemistry-matters.com

Detection limits are 200x lower with ID-SIM-HRMS

Conclusions

Generation of Cost-Effective Quality Data

- ✓ Cooperation between Stakeholders (EPA / Stack Tester / Lab)
- ✓ Purposeful DQOs
- ✓ Understanding the Technology and its Limits
- ✓ Accurately Assessing Analytical Measurement's Performance

A PBMS Response to Regulatory ICR Measurement Quality Objectives