## **PM<sub>2.5</sub> and Condensible Particulate Matter Regulatory Developments**

David Ostaszewski, PE





### **Particulate Regulatory History**

- Particulate matter, also known as particle pollution or PM, is a complex mixture of small particles and liquid droplets. PM is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, soil, or dust particles
- Particulate matter from stationary point sources was the first pollutant to be Federally regulated and is now the most widely regulated air pollutant emitted from industrial sources
- Particulate matter was originally defined as ANY airborne finely divided solid or liquid material with an aerodynamic diameter smaller than 100 microns (um)
- In 1971, the U.S. Environmental Protection Agency (USEPA) established the National Ambient Air Quality Standard (NAAQS) for total filterable particulate matter – There was some debate, but condensible particulate matter fraction was not included at the time



## Particulate Matter Regulatory History, con't

- Subsequent particulate control regulations developed by State and local agencies in response to the NAAQS have been instrumental in reducing particulate matter emissions since 1971
- Over time, the regulatory emphasis for particulate control has shifted to fine particles
- Health effect studies conducted in the 1980s and 1990s on smaller particle size fraction health effect studies resulted in new NAAQS ambient standards for PM<sub>10</sub> and PM<sub>2.5</sub>



## **Filterable Particulate Matter Composition**

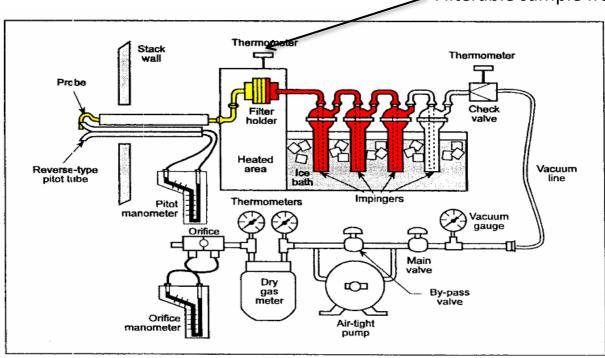
- Filterable particulate matter is made up of three fractions PM, PM<sub>10</sub>, and PM<sub>2.5</sub>
  - Filterable PM is currently defined as a particle emitted by a point source as a solid or liquid at stack temperature and captured on a filter (maintained at filter temperatures of 250 – 325 Deg. F) of an isokinetic type sample train.
  - Filterable PM<sub>2.5</sub> is particulate matter with an aerodynamic diameter equal to or less than 2.5 microns (um)
  - Filterable PM<sub>10</sub> is particulate matter with an aerodynamic diameter equal to or less than 10 um
  - All fractions are stable in atmosphere and collected with ambient samplers



## **Condensible Particulate Composition**

- Condensable particulate matter (CPM) also known as "back-half condensibles" fraction
  - Vapor or gas at stack conditions but which condenses and/or reacts upon cooling and dilution in the ambient air to form solid or liquid particulate matter
  - The formation of most condensable particulate matter occurs within a few seconds after discharge from the stack, but some can form significantly downstream
  - CPM is stable in the atmosphere and collected with ambient samplers
  - CPM is small, typically in the PM<sub>2.5</sub> size range, and therefore it is considered a component of both PM<sub>2.5</sub> and PM<sub>10</sub> sample fractions



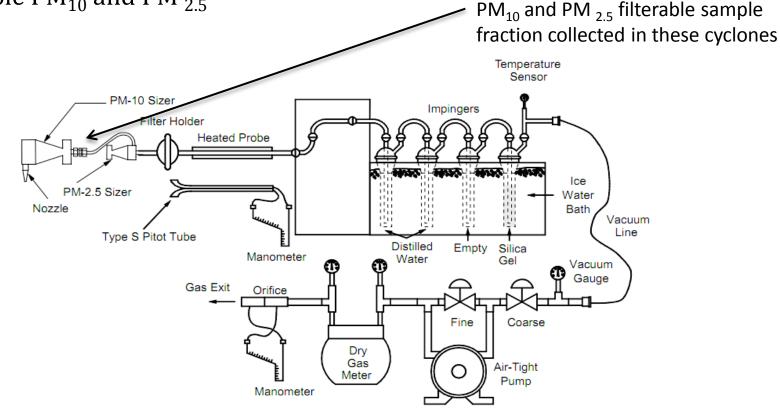

### **Particle Size Summary**

| USEPA Particle Size Terminology |                       |  |
|---------------------------------|-----------------------|--|
| <b>USEPA Description</b>        | Particle Size         |  |
| Supercourse                     | Dia > 10 um           |  |
| Course                          | 2.5 um < Dia ≤ 10 um  |  |
| Fine                            | 0.1 um < Dia ≤ 2.5 um |  |
| Superfine                       | Dia ≤ 0.1 um          |  |



#### **Filterable PM Test Methods**

 USEPA Reference Method 5 sample train for total filterable particulate matter measurement – Measures total PM (filterable PM + PM<sub>10</sub> + PM<sub>2.5</sub>)




Filterable sample fraction collected here



#### Filterable PM Test Methods, con't


USEPA Reference Method 201A Type Sample Train for measurement of filterable PM<sub>10</sub> and PM<sub>2.5</sub>





#### **Condensible Particulate Matter Test Methods**

- USEPA Reference Method 202 sample train for measurement of condensible fraction of PM<sub>10</sub> and PM<sub>2.5</sub>
- RM 202 was revised in December 2010 to collect condensate in dry impingers to reduce potential high bias caused by sulfate artifact formation





## **CPM Emissions – The Issues**

- Prior to the development of the first CPM sample method in 1991, CPM emissions were not on anyone's radar
- Thre was some debate at the time, however CPM was not included in early NSPS PM emission limit determinations or emission factor calculations
- Existing source testing methods did not quantify CPM emissions
- Upon USEPA promulgation of Method 202 in 1991, CPM became a quantifiable part of particulate matter. CPM could now no longer be ignored
- However, USEPA, individual States, and local agencies have been inconsistent in how they classify CPM emissions
- The differing approaches were in part due to the inaccuracy of the initial Method 202 that was highly variable due to the potential high bias caused by sulfate interferences



## **CPM Emissions – The Issues con't**

- Condensable emissions in many cases are a significant fraction of <u>total</u> particulate matter
- CPM emission factors are not available for many source categories

| Filterable and Condensible AP-42 Emission Factors |                            |                            |
|---------------------------------------------------|----------------------------|----------------------------|
| Source Type                                       | Filterable PM Factor       | Condensible PM factor      |
| Fuel oil fired boiler                             | 2.0 lb/10 <sup>3</sup> gal | 1.3 lb/10 <sup>3</sup> gal |
| Natural gas fired boiler                          | 1.9 lb/mmscf               | 5.7 lb/mmscf               |
| MDF press exhaust                                 | 0.18 lb/MSF ¾"             | 0.20 lb/MSF ¾"             |
| Hot mix asphalt                                   | 0.25 lb/ton product        | 0.17 lb/ton product        |
| Natural gas-fired turbine                         | 1.9E-03 lb/MMBtu           | 4.7E-03 lb/MMBtu           |



## **PM<sub>2.5</sub> Implementation Rule**

- Promulgated in 2007 and stated that filterable PM, PM<sub>2.5</sub>, and PM<sub>10</sub> emissions shall include gaseous emissions from a source or activity which condense to form particulate matter at ambient temperatures
- On or after January 1, 2011 (end of the "transition" period of the Rule), CPM emissions must be accounted for in applicability determinations and in establishing emission limitations for PM, PM<sub>2.5</sub> and PM<sub>10</sub>
- Compliance with PM, PM<sub>2.5</sub> and PM<sub>10</sub> emission limits and applicability determinations made <u>prior</u> to January 1, 2011 were not required to include CPM unless required by the individual source permit or State implementation plan
- Compliance evaluations conducted <u>prior</u> to this date without accounting for CPM emissions shall <u>not</u> be considered in violation of this section unless the applicable State implementation plan required CPM to be included.



## **PM<sub>2.5</sub> Implementation Rule Implications**

- Sources need to confirm that CPM is included in any new (post January 1, 2011) PM<sub>2.5</sub> and PM<sub>10</sub> emission limits
- It is not necessary to revisit old limits, however must incorporate condensable PM in new limits – Generally safe to assume that pre 1/1/2011 limits are filterable PM only but need to confirm!
- Double check all emission factors used to ensure that CPM is included where appropriate (many adjusted in 1998, but not all)
- Check emission inventories to see whether CPM is identified or addressed confirm whether you have a reporting issue
- Need to review any recent applicability determinations to be sure they correctly include CPM
- Be sure that the revised Method 202 (12/2010 method) procedures are used for any CPM emission testing – very important! Due to higher analytical costs, this approach will add approximately \$500 to \$800 to a typical single source PM<sub>2.5-10</sub>/CPM test program



## PM<sub>2.5</sub> Implementation Rule Implications, con't

- No later than January 1, 2011, CPM must be included in PM emission rates used in dispersion models
- But what assumptions are we to make in this modeling?
  - > Assume 100% of the material condenses in the stack or immediately upon exiting the stack exhaust?
    - Limited studies conducted or data to validate this assumption for individual source categories
    - May underestimate regional contributions
  - > Assume some arbitrary CPM percentage at stack exhaust?
    - Again limited data exists to obtain these ratios, especially given the variety of source types
- Current USEPA guidance is to assume all CPM is formed at the stack exhaust. However, check SIP and stay tuned as this approach could change



# PM<sub>2.5</sub> Implementation Rule Implications, con't

- Be sure to include CPM in any new control device evaluation and selection
- In some cases (i.e., water droplets present, small stack sizes, high stack temps) Method 201A for PM<sub>10</sub> and PM<sub>2.5</sub> cannot be used. Method 5/202 can be used to obtain a total PM/CPM value
- Remember though that this is a conservative approach as Method 5 only measures total PM- not PM<sub>10</sub> or PM<sub>2.5</sub>



