The Chemistry of Red Wine: pH, SO₂ and Phenolics

Al Verstuyft, Ph.D.
Al Verstuyft Consulting LLC
Fickle Fermenters Wine Club

What <u>is</u> wine ??????

"...bottled poetry."

Robert Louis Stevenson

"Liquid Music..."

"It puckers your mouth." - Art Buchwald

An expression of place

The blood of Christ

"the beverage of moderation"

Sunshine held together by water

-Galileo

A fate worse than death!

The most gentle and efficaceous of medicines

Susan B. Anthony
"Wisdom and wit to the wise"
-Archimedes

"Wine is proof that God loves us and desires us to be happy."

Benjamin Franklin

THE WALL STREET JOURNAL.

"It has a subtle nose, a long finish, strong body, and if you drink enough, you get absolutely pie-faced."

CHEMISTRY ON THE LABEL

Sulfur dioxide and enology: formation of acetylaldehyde in response to SO² in Fermentation. (Cornell University)

 \rightarrow

SO² and wine quality (reductive process graph) showing how SO² kills bacteria.
SO² inhibits oxidation and bottle fermentation, and SO² blocks polymerization.

(Cornell University)

General Chemistry:
Sucrose conversion to
glucose and fructose,
with structures.
[UC Davis]

Sulfide production during fermentation. (Virginia Tech)

Bleaching of Red Wine with excess sulphur dioxide, flavylium cation of anthocyanins.
 (Cornell University)

Maceration

How red wine is made

Mosel

Cabernet

Riesling

Sauvignon

fresh

mature

pure

sexy

focused fruit

integrated voice

beautiful

profound

crisp

round

loves sunlight

loves firelight

Sensible pH "Zones"

Distribution of free SO₂ at various pH's

				Free SO ₂ to
pΗ	$\frac{\% \text{ SO}_{2} \text{ (m)}}{\% \text{ SO}_{2} \text{ (m)}}$	% HSO3	$\frac{\%}{50_3}^{-2}$	obtain 0.8 ppm
				molecular SO ₂
2.9	7.5	92.5	.009	11 ppm
3.0	6.1	93.9	.012	13
3.1	4.9	95.1	.015	16
3.2	3.9	96.1	.019	21
3.3	3.1	96.8	.024	26
3.4	2.5	97.5	.030	32
3.5	2.0	98.0	.038	40
3.6	1.6	98.4	.048	50
3.7	1.3	98.7	.061	63
3.8	1.0	98.9	.077	79
3.9	0.8	99.1	.097	99
4.0	0.6	99.2	.122	125
				123

Why do some big red wines fail to age?

- Oxidized flavors (poor reductive strength)
 - Vinegar (nail polish, sour finish)
 - Aldehyde: sherry, nutty, lacking freshness
 - Caramel, pruney, baked, dull
- Over-polymerized tannins (poor structure)
 - Dry, grainy, dirty mouthfeel
 - Precipitation of structure
 - Aromatic disintegration unbalances flavors

Phenolic:

Any compound containing a benzene ring which carries an -OH.

The stability of anthocyanidins is dependant on <u>pH</u>. At a low pH (acidic conditions), colored anthocyanidins are present, whereas at a higher pH (basic conditions) the colorless <u>chalcones</u> forms are present.

Flavonoid:

Any of the class of three-ringed phenolics extractable from skins

Anthocyanin:

Any of the five red-colored flavonoid monomers

Malvadin, Delphinidin, Peonidin,

Flavilium ion:

Low pH red-colored form of an anthocyanin

Anthocyanin monomers:

Subject to bisulfite bleaching

Good Stuff about monomeric anthocyanins:

• Reactive: capable of improving structure

Bad Stuff:

- Nearly insoluble in 13% alcohol
- Colored only at low pH: 15-30% visible in wine
- Bleachable by SO₂
- Vulnerable to attack by enzymes
- Vulnerable to oxidation

Monomer:

A discrete small molecule which can serve as a building block for a macromolecule

Polymer:

A macromolecule created by linking monomers together.

Tannin:

A polyphenol with affinity for protein.

Interpretation of principle of oxydation of di-phenols

Singleton, 1987

Example of polymerative regeneration

(Singleton, 1986)

Building Blocks of Red Wine Structure

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Anthocyanin (color)

Contains no vicinal diphenol

(terminates polymer)

Flavanol (tannin)

Contains a vicinal diphenol

(can oxidatively polymerize)

Polymeric Pigment:

Stable, unbleachable color which is the basis of refined texture.

The Importance of Color

- Wine appearance itself
- Key indicator of ripeness
- Declines during ripening
- Polymerization chemistry:
 pigment is critical to wine texture

Acknowledgements

Clark Smith, WineSmith
Mike Riddle, Fickle Fermenters
Tom Webber, Seguin-Moreau Copperage
George Shanks, Peripolli
U California Davis, Viticulture & Enology
Napa Valley Community College, V&E Dep

Q&A or Shall We Get a Glass of Wine?

Reading List

Technical

Concepts in Wine Chemistry, Y. Margalit (1997); Concepts in Wine Technology, Y. Margalit (200X) Wine Analysis and Production, B.W. Zoecklin et.al.(1999); Introduction to Wine Laboratory Proceedings and Proceedures

Introduction to Wine Laboratory Practices and Procedures, J.L. Jacobson (2010).

Wine Science: Principles and Application, R. Jackson (2007) Principles and Practices of Winemaking, R.B. Boulton et.al. Handbook of Enology, Vol 1(2000a) & 2(2000b), Ribereau e The University Wine Course, M. Baldy (1997)

Encyclopedia

The Sotheby's Wine Encyclopedia, Tim Stevenson (2007)

<u>General</u>

An Ideal Wine, David Darlington (2011) The Judgement, George Taber (2011)

Articles Cited

- 1. "Vintage Chemistry" S.L. Rovner, C&EN p.30-32 May 1
- 2. "The Chemistry of a 90+ Wine" D. Darlington, N.Y. Tim 39, August 7, 2005
- 3. "Wine Sniffers Are Inconsistent" K.M. Reese, C&EN p. December 3, 2001

TEMPERATURE as a major limiting factor

WINE ACIDS AND THEIR CHARACTERISTICS

NAME	STRUCTURE (addic protoss (addicized)	WEIGHT PER MOLE	WEIGHT PER EQUIVLENT	pKa's	SOLUBILITY	INDUSTRIAL SOURCE	PROPERTIES
ACETIC	сн,соон	60	60	4.8	Complete	Bacteria & Yeast	Vinegar Taste (Smell is Ethyl Acetate, formed by yeast & bacteria from Acetic Acid & Ethanol)
LACTIC	СООН НО-С-Н СООН	90 .	90 :	:3.8	Complete	N/A.	Produced by maloliagtic bacteria from malio acid. Illegal to add.
MALIC	COOH HO-C-H H-C-H	134	67	35. 50	Базу	Applies	Weaker acid than tertaric. Not microbially stable.
TARTARIC	COOH 	150	75	30. 42	Refuctantly dissolves in wine. Hot water helps.	Orapes	Most expensive. Gives most pH shift for a given T.A. rise. Microbially stable in wine.
FUMARIC	H COOH C HOOC H	t 116	58	3.0, 4.4	Sparing. Takes effort to expeed legal limit of 0.3 gm/L.	Fungal	Kills malelactic bacteria.
CITRIC	H ₂ C - COOH HC - COOH H ₂ C - COOH	176	56.7	3.t. 47, 50	Easy	Citrus	Inexpensive, Chelating agent prevents metal case. Shines stainless. Only legal solid additive in France. Some bacteria may convert to acetic.

Poor anthocyanins lead to long, dry polymers

salivary protein

High anthocyanins lead to short, soft polymers

Flavilium Anthocyanin

520 nm when protonated (low pH)

Boulton-modified Somers

- Good measure of visible flavilium at wine pH
- Poor anthocyanin molar estimator

Adams BSA precipitation / FeCl complexing

- Total phenol determination at A₅₁₀
- Discriminates protein-precipitable polymer
- Good anthocyanin molar estimator

Malvidin-3 Glucoside Ionization

Adams method for molar estimation of ionizable anthocyanin

Maturity criteria for optimum wine quality

- Berry inspection and tasting
- Skin anthocyanins (A_{520})
- Co-factor potential (A₂₈₀ and A₃₆₅)
- Browning from rot or oxidation (A_{420})

Co-Pigmentation during Red Wine Fermentation

Anthocyanin (color)

Apolar rings (Sparingly soluble)

Positively
Charged
(repel each other,
so cannot stack)

Tannins

Flavanols & Super-Cofactor Flavonols (A_{280}) $(A_{280} \& A_{365})$

Uncharged

(can stack between anthocyanins to create colloids)

Oxidative dimer cross-linkages:

correlates with browning, i.e. general visible light absorption by polyphenols

Winegrape Phenolic Maturity

(Northern Hemisphere)

Maturity criteria for optimum wine quality

- Berry inspection and tasting
- Skin anthocyanins (A_{520})
- Browning potential $(A_{280} \text{ and } A_{365})$
- Browning from rot or oxidation (A_{420})
- Hue = Browning from rot or oxidation $(A_{\underline{420}})$ decline in $A_{\underline{520}}$
- Brix x berry weight detects sampling errors

Viewing List

- A Walk in the Clouds (1995)
- K. Reeves, A. Sanchez-Gijon, A. Quinn Sideways (2004)
- P. Giamatti, T. Hayden Church, V. Mad A Good Year (2006)
- R. Crowe, M. Cotillard, A. Finney Bottleshock (2008)
- C. Pine, A. Rickman, B. Pullman

MUSICAL APPRECIATION

WINE APPRECIATION

Flavylium Ion

Madrona Vineyards

Selected anthocyanidins and their substitutions							
Anthocyanidin	R ^{3'}	R ^{4'}	R ^{5'}	R^3	R ⁵	R ⁶	R ^r
<u>Aurantinidin</u>	-Н	-ОН	-Н	-ОН	-ОН	-OH	-OH R
<u>Cyanidin</u>	-OH	-OH	-H	-OH	-OH	-Н	-ОН
<u>Delphinidin</u>	-ОН	-ОН	-ОН	-ОН	-ОН	-Н	-ОН
<u>Europinidin</u>	-OCH ₃	-OH	-ОН	-ОН	-OCH ₃	-Н	-ОН
<u>Luteolinidin</u>	-OH	-OH	-Н	-H	-OH	-Н	-ОН
<u>Pelargonidin</u>	-H	-OH	-H	-OH	-ОН	-Н	-ОН
<u>Malvidin</u>	-OCH ₃	-OH	-OCH ₃	-OH	-OH	-Н	-ОН
<u>Peonidin</u>	-OCH ₃	-OH	-H	-OH	-ОН	-Н	-ОН
<u>Petunidin</u>	-ОН	-OH	-OCH ₃	-OH	-OH	-H	-ОН
Rosinidin	-OCH ₃	-OH	-Н	-ОН	-ОН	-Н	-OCH ₃